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Abstract. One of the main challenges of classifying clinical data is determining

how to handle missing features. Most research favours imputing of missing values

or neglecting records that include missing data, both of which can degrade accuracy

when missing values exceed a certain level. In this research we propose a method-

ology to handle data sets with a large percentage of missing values and with high

variability in which particular data are missing. Feature selection is effected by

picking variables sequentially in order of maximum correlation with the dependent

variable and minimum correlation with variables already selected. Classification

models are generated individually for each test case based on its particular feature

set and the matching data values available in the training population.

The method was applied to real patients’ anonymous mental-health data where

the task was to predict the suicide risk judgement clinicians would give for each

patient’s data, with eleven possible outcome classes: zero to ten, representing no

risk to maximum risk. The results compare favourably with alternative methods

and have the advantage of ensuring explanations of risk are based only on the data

given, not imputed data. This is important for clinical decision support systems

using human expertise for modelling and explaining predictions.
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Introduction

Data mining is a general term for applying methods from statistics and machine learning

that find patterns and relationships within data sets [1]. In the health domain, data mining

can be used to aid in the process of illness diagnosis, treatment options and prediction

of health problems [2,3]. In order to get the best outcome, a number of issues need to be

addressed, one being the nature of the data. Medical data, especially those collected from

general patient assessments, often have a large number of variables, unbalanced number

of samples per class, and missing values [3]. The most effective methods of analysing
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them need to be robust with respect to these qualities. They are particularly prevalent in

mental health data used to predict risks such as suicide, which is the focus of this paper’s

research.

The next section will introduce the mental-health domain and the nature of risk data.

The paper will then discuss types of missing data and how they influence the most appro-

priate classification algorithms. Different methods for selecting features from the patient

sample are introduced, followed by some classification algorithms using the selected

features. Conclusions lead to the new algorithm proposed in this paper. Its results are

compared with other common approaches and the paper ends with a discussion of the

method’s utility for GRiST and other clinical decision support systems.

1. Background

Mental health risk data have high dimensionality and large variability in missing values

because they encompass all areas of a person’s life, including social, emotional, mental,

and physical. Physical health problems tend to be more constrained. Common methods

of dealing with missing data are either to impute them, or ignore any records with missing

values. Imputation usually involves filling the missing data with values, which could be

the mean, mode or a random value from a sample of the data set that has similar features.

However, imputation is not always better than models built only on the data that are

present in the sample, especially when the data are not missing completely at random

[3,4].

A method for reducing the scale of missing data is by preprocessing using feature se-

lection. The aim is to obtain a subset of features that best represent the complete data set.

It reduces the dimensionality of the sample by ignoring the features that are redundant

or irrelevant, which not only improves classification performance but also diminishes the

number of variables that can have missing values. Selection of features is carried out

by a subset generation unit, with each subset evaluated and enhanced until a predefined

evaluation criterion is met [5,6].

There are two main methodologies for determining useful information from the se-

lected subset of features: supervised and unsupervised learning. In unsupervised learn-

ing such as clustering, data instances are grouped together based on similarities with-

out prior knowledge of their natural grouping. In contrast, supervised learning uses the

known grouping of data into classes and concentrates on how to assign new, unclassified

objects into the most appropriate class [1,7]. This paper uses supervised learning because

the risk data has been assigned by clinicians to one of eleven classes.

1.1. The GRiST Mental Health Data Set

The data set on which all the experimentation was done is from the GRiST project [8]

for assessing risks associated with mental-health problems, such as suicide, self-harm,

harm to others, vulnerability, and self-neglect. GRiST is a clinical decision support sys-

tem based on a psychological model of classification [9] for representing mental-health

expertise. The expertise was elicited and implemented from mental-health practitioners

by interviews and focus groups, and then refined through feedback from using the model

in practice [10,11,12]. GRiST is used by many mental-health organisations within the
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UK and currently (May, 2014) has 500,000 completed individual risk assessments from

about 60,000 patients collected by almost 3,000 clinicians. The amount of data within a

particular assessment varies depending on where in the care pathway the assessment is

being conducted (initial screening, full assessment, repeat assessment, etc), the amount

of time a clinician may have, and the perceived level of risk attributed to the patient,

which affects whether or not the assessor collects additional data. All these factors create

a heterogeneous patient population that is difficult for mathematical classifiers to handle

consistently. Furthermore, the representation of expertise within GRiST is a deliberate

design choice to ensure advice can be explained using knowledge and reasoning that res-

onates with the mental-health clinician’s own cognition. This means it cannot be based

on imputed data that the clinicians did not actually provide. Neither can it use techniques

for dimensionality reduction that extract new features [13] not recognised as part of their

mental-health knowledge structures.

This paper proposes an algorithm to select the most relevant data for each patient

separately, as opposed to finding a singe subset to be applied across the whole data set,

as is commonly done by feature selection algorithms. The optimal feature subset for

a patient is extracted and then the classification rule for this subset is learned by only

using samples in the database where all matching features have values. Hence, neither the

training data nor the patient vector have any missing data, which means the classification

prediction can be explained only in terms of information the assessor actually provided.

1.2. Missing Data

Medical data sets have large proportions of missing values in their records. The cause

may vary from data entry mistakes to information that patients neglect to share or asses-

sors do not request. The reasons for the missing data are important because they impact

on the degree of bias caused by ignoring them. Data Missing At Random (MAR) are

not linked by relationships or patterns between items in the data set. Instead, they could

be MAR due to external influences, which might only affect certain variables but not

in any systematic way. Data that are Not Missing At Random (NMAR) have a relation-

ship between the missing items and the sample set, such as assessors skipping a certain

question for a particular group of patients because of the consequences of the answers.

Data Missing Completely at Random (MCAR) are those where there is no relationship

between the data items or the output classes [14,15,16,17].

One of the most common ways to deal with missing data is by discarding the records

that include them. This concept may be applicable if a small percentage of records has

missing data and their removal from the data set would not affect the diversity of infor-

mation in the remaining sample, especially if the data are MCAR or MAR. On the other

hand this methodology could lead to a bias in the resulting classification if the data set

is of small size. An alternative method is imputation where missing data is added by,

for example, the hot deck imputation method which involves randomly choosing a value

of the missing feature from the set of samples which are closest to the sample with the

missing value [1,2,4,18].

More complicated methods include multiple imputations, resulting in several data

sets with alternative imputed values for the missing variables. Each set is passed to the

classifier and the results are merged to produce a consensual classification. Another ex-

ample is the K nearest neighbor algorithm (KNN) where a subset of the data set is cho-
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sen according to a distance measure to the sample with missing data. The replacement

value is provided according to a predefined criterion, sometimes simply the mode for

discrete values and mean for continuous, and other times by applying weights according

to their distances. These methods are computationally more expensive and their effect is

dependent on the problem structure[14].

Choosing the treatment methodology for missing data is dependent on the problem

and how this problem is affected by the advantages and disadvantages of the selected

methodology. Some data sets may work well with the deletion of records at the price of

losing information or by using imputation at the price of increasing the computational

cost [4,14].

The mental health research addressed here is built on a data set that has a large

percentage of missing values in varying amounts per sample. Applying list-wise deletion

on the whole data set would have been impossible since there are no complete records

available. Imputation would likewise be impractical because of the computational cost

and the degradation of accuracy in imputing such a large percentage of missing records.

This paper takes the opposite approach by working only with data that are present in the

sample to be classified and are also matched by samples in the training set. Although

some records would again be ignored, there are fewer of them and the chosen ones are

similar to the patient because they match on the same group of questions, which should

help reduce the bias.

1.3. General Feature Selection Approaches

Reducing the number of features used in classification necessarily reduces the amount

of missing data. Feature selection is an important preprocessing task because it needs to

produce a subset that best represents the whole data set. Reducing the features by remov-

ing redundant and irrelevant ones also helps the performance of classifiers. A practical

advantage of importance to GRiST, where the learning and classification is effected in

real time, is that the models can be built more quickly. The following subsections provide

a brief description of how feature selection can be performed.

1.3.1. Subset Generation

A subset of features is chosen according to two criteria. First, whether the feature selec-

tion should start with an empty set and have features gradually added to it (forward selec-

tion) or whether they should start with all the features and have ones gradually removed

(backward selection). A combined approach could be used where it starts with either

method and features are added or removed according to some bidirectional measure.

Secondly, a search strategy for choosing the best sample set must be implemented,

which can be either through complete or sequential or random search. A complete search

aims at producing the optimal subset. A sequential search adds or removes features ac-

cording to an evaluation criterion until a stopping condition is fulfilled. Finally a ran-

dom search starts with a random subset of features and continues in the same manner as

the sequential search or keeps producing other random subsets until the best subset that

fulfills the stopping condition is met [5,6].
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1.3.2. Subset Evaluation

The evaluation of subsets is done depending on whether a wrapper or filter model is

used. The difference is that the wrapper uses dependent criteria, where it evaluates the

model based on the performance of a classifier to see whether the selected features suit

the chosen classification algorithm or not. The filter model uses independent criteria that

evaluate the subset without knowing which classifier will be used for classification. In-

dependent criteria include correlation measures between features and classes or informa-

tion measures to calculate the information gained from the addition (or removal) of a fea-

ture. A hybrid model that combines both the filter and the wrapper methods can be used

with a mining algorithm and independent measures to evaluate the subsets [5,19]. Filter

methods are most commonly used, are simple, do not rely on a prediction algorithm and

allow the classification to be performed on a real-time basis. They are most suited to the

mental-health data and its application for the GRiST decision support system so the work

presented here will be based on it.

1.3.3. Stopping Criteria and Result Validation

Subset evaluation is followed by specifying the stopping condition defining acceptable

performance. It could be that all the subsets are evaluated, or the evaluation could stop

when addition or deletion of new subsets fails to make any improvement. Or there could

be an acceptable error threshold and the first subset that meets it is chosen. Finally, the

selected features could be compare to ones already determined by experts or by compar-

ing results produced by the mining algorithm on the selected features and on the whole

set of features [5].

1.4. Correlation-Based Feature Selection

Correlation-based Feature Selection (CFS) is a filter-based method that uses correlation

to select the subset of features. The CFS applies a forward selection method and the

subset evaluation applies the correlation measure.

First, two matrices are created, feature-feature correlation and feature-class correla-

tion, from the training data set. The idea is to use these matrices to choose features that

maximise correlation with the class vector and minimise correlation between each other

[20,21]. Assuming X and Y are two continuous features, in order to get the correlation

between them, Equation 1 is applied where n is the number of samples and σX and σY
are the standard deviation of features X and Y respectively.

rXY =
∑xy

nσXσY
, (1)

In this paper, the proposed feature selection methodology is an upgrade to CFS by

using the partial correlation equation. Partial correlation is a calculation that shows how

much a certain variable X correlates with another variable Y after the removal of a set

of other influencing variables, Z [22]. Equation 2 shows the calculation of the partial

correlation where it can be seen that the correlation of X and Y are calculated and the

influence of Z is subtracted.

rXY.Z =
rXY − rXZrYZ√

1− r2
XZ−

√
1− r2

YZ

, (2)
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The use of correlation guarantees choosing features that are highly related to the

output vector of classes and partial correlation would form the constraint that any feature

added to this subset would still be highly correlated with the output vector but least

correlated with the features already chosen. This would reduce the redundancy between

the selected features and thus increase the value of the chosen subset of features as a

representation of the dataset. This Dynamic Feature Selection and Classification (DFSC)

algorithm is introduced in the next section followed by the experimental results.

2. Proposed Dynamic Feature Selection and Classification (DFSC) Algorithm

In this section, the novel DFSC methodology for handling missing features is proposed

that employs list-wise deletion but with a new concept. First a matrix is created with only

those features that are present in the vector to be classified and then a subset is chosen

from this matrix for the classification algorithm. Some traditional methods of handling

missing data add new information to the sample but this may lead to increased bias and

also redundant information [4]. The idea behind our methodology is to address a patient

record by considering only those questions the assessor did answer and not try to predict

or assume any questions that were not recorded.

Part of the motivation is that the method will be used to explain risk advice within

the context of a psychological model of classification. The reasons why a patient has

been predicted to be high risk, for example, must be explained using concepts that res-

onate with the assessor and, most importantly, only use data that were provided by the

assessor. It would be a step too far for assessors to trust the advice if they could see it used

“fabricated” data, irrespective of the reasons for adding it to the classification algorithm

or the degree of data authenticity.

Given the variety of data subsets collected for patients, it would be difficult to find

one that was common to them all. For example, the suicide risk data has 138 separate

potential variables but only about half are answered on average and rarely if ever the

same half. Hence, it was decided to treat patients independently, such that each record

would be classified according to a different set of features that are selected only from the

questions associated with that one patient. This maximises the choice of variables for a

patient but requires the construction of individual classification models for each one. If

this dynamic feature selection and classification model learning is to be achieved in real

time, the algorithm needs to be tractable and fast.

The basic idea presented in Algorithm 1 is to start with a training set and calculate

the correlation matrix for all patient features with the output class vector. This will be

used for test patients to select their features. The method of selecting the subset of fea-

tures is an essential step in the algorithm. For each patient, it uses forward selection from

the available features, starting with the feature that has the highest correlation with the

class vector. Features are then added to this set by choosing the one that is next in order

of correlation with the class and has least correlation with those already selected in S.

The correlation between feature S and the class vector is calculated only using the rows

where both values exist. In order to add more features to the subset, the partial correlation

coefficient is used to ensure that each time a new feature is added, it attempts to max-

imise correlation with the class vector and minimise correlation with the chosen features

S. The objective is to add features that continue to explain the dependent variable’s vari-
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Algorithm 1 Dynamic Feature Selection and Classification (DFSC) without involving

missing data

Given a training set, T , of all patient vectors and their associated classes

Calculate the feature-class correlation matrix

for i= 0 to TestPatients.count do
Starting with empty set, S, of selected patient features

Starting with complete training set, T , of all features

Choose the feature in i with the highest value in the feature-class matrix

Add chosen feature to S
for j = 0 to RequiredFeat.count do

Choose feature correlating most with class vector and least with S

Add chosen feature to S

end for
Remove all vectors from T that have missing values for features in S.

Learn classification model using S and T
Classify the test patient record

end for

ance but without unnecessarily adding redundancy to the sample set of features. Reduc-

ing redundancy is important for the performance of the chosen logistic regression [23]

classification method as well as speeding up model construction by keeping the vectors

as lean as possible.

After the feature set is selected, a logistic regression classifier is created for the pa-

tient using only those members of the training set that have answers for all features in the

subset, S. Logistic regression is used partly because of its simplicity and effectiveness for

this domain but mostly because the results can be output in a format commensurate with

the GRiST model of expertise. The regression weights, values, and predictions can be

presented within the classification model so that the assessor can understand the rationale

for a certain risk class prediction.

3. Experimental Results

In the presented experiments, the classifiers and feature selection methods used for com-

paring models are implemented via the WEKA software package [24]. The implementa-

tion of the proposed DFSC algorithm was done in MATLAB but with WEKA also used

to compare the results with alternative classification algorithms.

3.1. Data Set

The new algorithm is implemented on GRiST data for patients with suicide risk evalua-

tions [8]. The data were collected by clinicians using the GRiST clinical decision support

system as part of their normal practice. All risk data are automatically anonymous as part

of the collection and data storage implementations and ethics approval was obtained for

analysing the results.

The clinicians collect patient data and provide their own judgement of the suicide

risk, giving a value between 0 and 10, i.e one of 11 classes. This sample GRiST data
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set is very challenging because the percentage of missing data is 59% and none of the

patient records are complete. Neither are the risk classes equally distributed, with Table 1

showing the number of patient records available per class (GRiST measures risk between

0 and 1, which is why the judgement classes have been divided by 10). The number of

features in the data set are 138, including the risk class variable, and the total number of

patient records are 31,942. The data were collected from almost 3000 different physicians

working in various organizations, with different training regimes and patient population

characteristics. This heterogeneity is testimony to the difficulty in building a single model

that can accurately represent classification behaviour across all patients and clinicians.

Risk 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Risk Count 3050 7221 7873 6087 2813 2189 972 922 557 199 59

Table 1. Number of Patients in Each Risk Class

3.2. Results Comparison

First the results produced by classifying the whole data set with no feature selection

will be discussed, followed by the results when selecting features based on the correla-

tion feature selection algorithm explained in Section 1.4. Finally the results of the new

DFSC algorithm are presented. All experiments were implemented using 10-fold cross

validation and classified using logistic regression.

The results are measured as the accuracy percentage calculated on two levels. One is

the 100% correct classification, meaning the patient’s risk is classified into the same risk

category as that given by the clinician. The other is a 1-class shift tolerance, which allows

the classification to be considered correct if it is only 1 class away from the clinical

judgement, meaning that a 0.1 risk patient could be classified as 0 or 0.1 or 0.2 risk. This

tolerance is clinically legitimate because a granularity of 11 classes is higher than the

semantic categories used to distinguish patient risk, which are not more than five (none,

low, medium, high, max, for example). Many risk tools only have three and sometimes

just a binary low/high.

In order to compare approaches, missing data must first be addressed. List-wise

deletion would not be suitable since all the patient records include missing data. A more

practical solution is imputation. In this experiment the missing data were replaced by the

mean of the values from the data set and then applied to the logistic regression classifiers.

The results produced are shown in Table 2. It provides the baseline for comparing no

feature selection and data imputation for all missing data with feature selection and no

missing data imputation.

Logistic Regression

100% Correct 32.44%

1 class shift 76.16%

Table 2. Results of applying logistic regression on the whole dataset

Table 3 shows the results for feature selection without missing data imputation using

the CFS algorithm that was discussed in Section1.4 and the new DFSC algorithm intro-

duced in this paper. As for the full data results in Table 2, logistic regression was used for
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classification. Comparing the results in Table 2 with the CFS column in Table 3, it can be

seen that feature selection did improve the results by around 3% in both the 100% correct

and the 1-shift mode. The CFS algorithm produced its best results when using about nine

or ten features. As one might expect, the results of the DFSC algorithm produced highest

accuracy for fewer features, with between four and seven being optimal. Furthermore,

these fewer features produced nearly a 3% improvement in the 100% correct column and

almost 5% improvement in the 1 class shift.

These two results support the rationale used for the proposed method because reduc-

ing redundancy helps logistic regression performance as well as requiring fewer variables

to explain the same amount of variance in the dependent variable. Even with only two or

three features, the proposed algorithm has shown better results than the CFS algorithm.

Clearly the best two or three features for a particular patient are more representative of

that patient than the best two or three across all the patients taken together.

CFS DFSC

Feat Count 100% Correct 1 Class Shift 100% Correct 1 Class Shift

2 28.53% 70.26% 36.49% 82.15%

3 30.40% 72.54% 36.98% 83.01%

4 33.56% 77.18% 37.51% 84.04%

5 34.68% 78.67% 38.07% 83.33%

6 34.81% 78.90% 37.77% 82.41%

7 34.98% 79.31% 36.72% 81.01%

8 35.00% 79.11% 35.63% 79.38%

9 35.07% 79.33% 34.80% 77.68%

10 35.18% 79.17% 33.99% 76.42%

Table 3. Results of proposed DFSC methodology

4. Conclusion

In this research, classification of mental-health risk data was conducted without imputing

any missing data and by minimising the list-wise deletion for training the classification

model. The proposed DFSC algorithm achieved this by calculating separate classification

models for each patient based on the particular set of features they possessed. Features

were selected by maximising correlation with the class and minimising redundancy. The

results compared well with more standard approaches and with fewer variables in the

classification model.

The obvious caveat is that better imputation and more sophisticated classification

algorithms would have improved the competition. Nevertheless, this algorithm demon-

strates the feasibility of generating individual logistic regression models tailored specif-

ically for each patient’s context. For the GRiST decision support system, predictions

need to be generated in real time, which means calculating a patient’s regression model

as quickly as possible. The proposed DFSC facilitates this by reducing the number of

variables required for optimal performance. Overall, the approach has important impli-

cations for providing decision support in problem domains with high dimensionality but

sparsely populated data sets.
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