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Abstract—Assessing the condition of water pipes is a complex
task, partly due to scarcity of complete maintenance records and
field observations. This makes it harder to identify the factors
determining pipe condition and their probabilistic relationships
with the deterioration process. A challenge facing water utilities
is to find an effective and reliable tool for assessing their pipelines
and taking prompt decisions regarding repair and maintenance
to extend the service life and keep them safe from sudden failures.

This paper presents research on a new fuzzy-based method-
ology for modelling water pipe condition prediction. It proposes
a hierarchical fuzzy rule-based model that uses a simplified and
effective method for supporting the elicitation of the fuzzy rules
and adapting uncertainty propagation that can be intuitively
understood by human experts. The results of applying the model
to the water pipes domain shows the plausibility of extending the
approach to other knowledge domains based on human expertise.
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I. INTRODUCTION

Buried water pipes can be made of many materials, such
as cast iron, ductile iron, asbestos cement, polyvinyl chlo-
ride, and pre-stressed concrete cylinder. It is vital to keep
evaluating their structural integrity and performance because
they inevitably degrade. For example, in a recent assessment
study of America’s drinking water infrastructure, the American
Society of Civil Engineers (ASCE) assigned it a grade of poor,
“D”. It indicated that much of drinking water infrastructure is
nearing the end of its service life and facing risk of failure.
The cost of replacing all the water pipes was estimated to be
more than 1 trillion US-dollars [1].

All buried water pipes are prone to failure under nor-
mal service conditions. The deterioration and failure process
is complex and depends heavily on pipe material, environ-
mental surroundings, and operational conditions [2]. Kleiner
and Rajani [3] described the buried pipes lifecycle in three
phases. The first phase, known as “burn-in”, describes the
period immediately after the installation where failure can
occur due to manufacturing defects and storage, and improper
construction processes. The second “in-usage” phase is when
the pipe begins service. Failure in this phase may occur due

to inappropriate maintenance, natural hazards, and external
interference. The third phase is “wear-out”, in which the
probability of failure is increased due to deterioration and
ageing.

To date, there is no prescribed method for water utilities
to assess their buried pipes. Alternative approaches include
destructive testing and nondestructive testing [4], [5], [6]. The
field observations obtained from inspections are related to the
condition of pipes and converted into an overall condition rat-
ing so that an appropriate course of action regarding repair and
maintenance is undertaken. However, obtaining such observed
data is not always feasible due to the prohibitive costs of
applying direct inspections and/or inability to apply them while
the pipeline is operating. In these situations, knowledge from
experienced experts can be exploited to model the relationships
between factors (inputs) and condition of pipe (output).

The aim of the research presented in this paper is to
explore how different types of data and variations in the degree
of uncertainty within a system can be modelled using fuzzy
methods and how these methods can both complement and
enhance human expertise. The research will primarily focus
on studying and analyzing the large diameter Pre-stressed
Concrete Cylinder Pipe (PCCP) type. It is widely used as the
transmission part (backbone) of water supply systems around
the world due to its high capability for resisting large internal
pressure and external forces [7]. The problems of analyzing
the pipe domain are not unique and the research is motivated
to produce a generic methodology that can be applied in
alternative domains.

The paper will firstly provide a review of general ap-
proaches used in modelling the failure and condition rates
of water pipes. This will help identify the performance and
capabilities of the developed models and hence the barriers
facing the development of an effective and reliable model. An
overview of using the fuzzy approach in water pipe condition
modeling is then provided, with a focus on hierarchical models.
The rationale for the proposed fuzzy model is discussed,
explaining how it tackles the limitations of previous models.
The detailed steps of model construction and information
processing are then described with given examples. The results
of applying the model to real-world PCCP data are provided
and the model performance is discussed. The paper ends with
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a discussion of the advantages of the proposed model and the
next steps to be taken.

II. WATER PIPE CONDITION AND FAILURE PREDICTION

APPROACHES

In general, there are different types of modelling ap-
proaches in the literature used for predicting the condition
of water mains. These approaches can generally be classified
into three categories: (1) statistical, (2) probabilistic and (3)
artificial intelligence (AI). The condition and/or performance in
small water distribution mains is assessed through the observed
failure rate (frequency), in large water transmission mains it is
usually through a condition rating scale due to the scarcity of
the occurrence of failure events [3], [5].

The statistical modelling approach is widely used in solving
engineering problems. For water mains, historical data on
past inspections and failures have to be available in order to
determine the mechanism and rates that can be assumed to
continue in future. It is usually applied to small and medium
distribution water mains where recorded historical failures
and/or condition data are much easier to obtain [3]. These
methods can be classified into survival analysis models that
use Weibull/Exponential equations [8], [9], regression models
[10], [11], and simple time-linear and time-exponential models
[12], [13]. Generally, they are simple mathematical models and
can be used for any type of pipe materials.

A limitation of statistical modelling is the requirement
for large amounts of historical pipe condition/failure data
recorded over a long period of time, which limits the variety of
variables available for analysis. Kleiner et al. [14] argues that
models should include as many independent variables as pos-
sible. Using few measurable (objective) pipe factors (e.g. age,
length, diameter, breakage history) without including other
important operational and environmental time-dependent and
qualitative factors will not properly account for the subjective
and probabilistic nature of pipe deterioration and condition.
Another limitation of such models is that they do not provide
information about pipes that have not yet failed; one of the
motivations for the present work is to produce a model capable
of inferring the condition of pipes that do not indicate any signs
of distress.

The probabilistic modeling approach utilizes the probabil-
ity or relative frequency distributions of certain input values
to predict distributions or ranges of output values. It has been
used to predict the failure rates of pipelines in general [15],
[16] and the failure risk of water pipelines in particular [17],
[18]. However, they are usually applied where the interre-
lationships between the factors and process of deterioration
and failure are well understood; otherwise, large data sets are
needed to train and understand relationships between factors.

Applying artificial intelligence (AI) techniques also de-
pends on the type and availability of data. When large amounts
of historical data exist, a data-driven approach, such as artificial
neural networks (ANN), can be used to determine model
structure and learn cause-effect relationships and uncertainties.
Such models have the ability to learn and generalise results
over time [18], [19], [20] and have recently been used for
modelling the condition and deterioration of water pipe infras-
tructures [21], [22], [23], [24].

Case-based reasoning (CBR) techniques can be applied
when a large and variant database of experienced cases (case

library) about the problem is available [25], [26]. In CBR,
a specific output (e.g. pipe condition) given a set of input
data can be predicted by retrieving and adjusting relevant
information obtained from the case library. In this approach,
the case library has to be updated in order to obtain accurate
results [27]. Fuzzy-based approaches come into their own
when historical data are not available or, if available, they are
ambiguous or imprecise. The missing knowledge comes from
human expertse in the specific field. Fuzzy systems usually
provide a tool, such as rules, for representing the knowledge
base of the system that allows fusion and aggregation of
imprecise (vague) information/data throughout the components
of the system [28].

The theory of fuzzy sets was developed in 1965 by Zadeh
[29] to provide a tool for dealing with the imprecision inher-
ent in many problems, and for representing uncertainty and
vagueness that cannot be represented by conventional crisp
sets methods. Fuzzy sets are based on a membership function
that has a continuous grade varying between 0 and 1. Each
value within the range of the fuzzy set has a membership grade
determining how much it belongs to the set. Fuzzy membership
functions can be efficiently used to deal with the imprecise
input data and their ranges (categories).

Fuzzy sets are suited to knowledge systems represented as
if-then rule statements, which have the advantage of describing
the system linguistically [28], [30], [31]. The fuzzy-based ap-
proach has been widely applied to infrastructure management
including modelling water pipe condition assessment [32],
[33], [34], [35].

III. FUZZY MODELLING APPROACH

A. Hierarchical Fuzzy Rule-based Approach
One of the main issues in fuzzy modelling is the structuring

of data, which can have a significant effect on the performance
of the model. A good understanding of the pipe lifecycle,
process and causes of failure together with the nature and
characteristics of data will help arrive at a meaningful and
reasonable structure. In this research, a hierarchical fuzzy rule-
based approach is adopted to model the condition prediction
of buried PCCP water pipes. This approach is highly suited to
accommodating and integrating uncertainties inherent in the
problem due to the imprecision of measurements of objective
data (e.g. relative reliability of inspection/testing methods and
human judgement of results). The existence of qualitative
data that are linguistically described and the vagueness of
the relationships between the data also lend themselves to
a fuzzy approach. Furthermore, they support representations
that resonate with how experts conceptualise the problem. This
facilitates knowledge elicitation, which can be done explicitly
using rules consisting of linguistic terms that the experts
understand; it is an advantage of fuzzy rule-based approaches
over other methods used in decision support systems [28], [36].

One reason for a hierarchical fuzzy approach is to over-
come the curse of dimensionality [37], [38]. In standard fuzzy
systems, there is an exponential growth in the number of
rules as the number of input variables increases. Suppose n
is the number of input variables and m is the number of
linguistic quantifiers for each variable, then the total number
of fuzzy rules is mn for every combination of quantifiers. For
an example of n=6 and m=2 the number of rules required is
26=64. If the system is decomposed into 2 fuzzy sub-units,
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each with 3 variables, and a sub-unit of output aggregation,
then the total number of rules is the sum of all fuzzy sub-unit
rules (23+23+22=20). In this way, the total number of fuzzy
rules is reduced significantly to a reasonable and manageable
level, which increases system transparency and interpretation.

B. Previous Hierarchical Fuzzy Models
The hierarchical fuzzy approach has been applied to several

domains for modelling risk prediction and condition assess-
ment. Among relevant and interesting models are translating
inspection results into condition ratings for water pipes [34],
evaluating the risk of water main failure [35], assessing risk
in the mining industry [39], and railway risk analysis [40].

In Rajani et al. [34], observations from visual inspection
and non-destructive tests are converted into water main con-
dition ratings using a fuzzy approach, called “fuzzy synthetic
evaluation technique”. Data were organised into a two-level
structure (i.e. indicators and categories), and then evaluated
based on three-steps: fuzzification, aggregation and defuzzifica-
tion. The aggregate effect of inputs at each level is calculated
by synthesising their weights and fuzzy membership values
using matrix multiplication.

Fares and Zayed [35] incorporated 16 risk of failure factors
grouped into four sub-models (environmental, physical, oper-
ational and post failure) and another sub-model that combines
the results of the previous ones to produce a risk of failure. The
model uses a fuzzy rule-based inference method to calculate
the risk of failure in a crisp format.

Shikha and Sharad [39] and An et al. [40] used a fuzzy
reasoning approach to calculate the risk level of each hazardous
event with respect to three factors. They employed a fuzzy
analytical hierarchy process technique to determine the relative
weights of the risk factors so that the risk assessment is
progressing from the base level to the final system level by
synthesising factors and their weights at each level.

Based on this review, certain issues emerged with respect
to data structuring and knowledge processing using a hier-
archical fuzzy approach. The way the model is constructed
should appropriately account for modelling vague relationships
between variables and how they interact with each other so that
dissonant data are not in the same category. This may affect
knowledge processing leading to discrepant or contradictory
results. It may explain why Fares and Zayed’s model [35]
found that pipe age has the highest impact on water main risk
of failure followed by pipe material and breakage rate. These
results contradict received wisdom in the water pipe domain
that the direct distress factors (e.g. breakage, cracks, joint
leaks) have more effect on pipe failure process than indirect
distress factors (e.g. age, pressure rate, soil conditions).

Pipes can continue service for even longer than their design
life if operational and environmental conditions are stabilized
but a breakage means the presence of a leak, which indicates
that the failure has already started. It is preferable to include
as many varied and independent variables as possible in mod-
elling so that the model can be generalised for evaluating the
entire set of pipe situations. Furthermore, the models reviewed
used different types of defuzzification methods to transform
fuzzy values into crisp values at different stages of knowledge
processing, which causes some information loss. For example,
the information lost in defuzzifying the lower level sub-model

will be propagated to the upper level sub-model in the system,
which affects the accuracy of the outcomes [38]. This is
compounded with an increasing number of hierarchical levels
in the system.

This paper describes a new fuzzy-based methodology to
tackle these issues. The suggested improvements are as fol-
lows.

• A tractable method for generating the set of weighted
fuzzy rules by using fuzzy processing of the variable
relative influence and the impact of each variable value
on the associated output. It utilises fuzzy numbers
in the process of transforming and combining fuzzy
values (regarding variable weights and their impact
on the output) [41] such that full information about
uncertainty is maintained throughout the process.

• Incorporating the fuzzy weights of input variables into
the rule so that they carry through to the inference net-
work and allow a better way for adapting uncertainty
propagation throughout the system components.

• Delaying defuzzification of fuzzy values in the in-
ference process until the very end of the process
so that uncertainty information is maintained during
knowledge propagation (i.e. once input variables are
fuzzified at the first-level, information is propagated in
its fuzzy format throughout the hierarchy to preserve
the entire fuzzy data).

• A new structuring of condition data that utilizes
both direct and indirect distress data organized into
concepts: each variable in the first level contributes
towards the condition within its concept (group) and is
the same for the concepts in subsequent levels. There-
fore, the overall condition of the pipe is calculated
by aggregating the interaction of these variables and
concepts throughout the hierarchy structure.

C. Fuzzy Numbers

Fuzzy numbers are defined as a fuzzy subset of a universe
of discourse on real numbers R [42], [43]. They allow bet-
ter representation of linguistic/inexact variables than ordinary
numbers and provide a suitable means of transforming a
fuzzy (vague) environment into a mathematical model. In
the proposed fuzzy methodology, experts state their opinion
linguistically regarding the comparisons of variables’ impor-
tance. In addition, values associated with inputs and output
are also linguistically represented. A triangular fuzzy number
is used to express these vague values. It is fast in computation
and gives more intuitive and natural interpretation due to the
simple shape of its membership function [44]. Generally, a
triangular fuzzy number, a, is represented by three points:
a = (l,m, u), where l and u are the lower and upper bound of
the fuzzy number, respectively, and m is the median value. The
membership function of the triangular fuzzy number, μa(x),
is shown in Figure 1.

When used in judgment, the interval of a triangular fuzzy
number, (l,m, u), could be interpreted as the minimum possi-
ble value, the most possible value and the maximum possible
value, respectively.
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Fig. 1. Triangular fuzzy number, a = (l,m, u).

D. Fuzzy Analytic Hierarchy Process
The Analytic Hierarchy Process (AHP) was introduced

by Saaty [45] and has been widely used as an analysis and
evaluation tool for solving many practical multi-criteria deci-
sion making problems. In its traditional formulation, experts’
judgments are represented as exact numbers (ratios) to form the
comparison matrix for criteria and alternatives. Buckley [46]
has fuzzified Saaty’s AHP by employing fuzzy ratios instead of
exact ratios in representing preference and personal judgment
in order to handle the inherent uncertainty and imprecision
associated with many problem domains in reality. The method
has become known as the Fuzzy Analytic Hierarchy Process
(FAHP) and many researchers have used it in various domains,
including service evaluation [47], vulnerability of cities with
respect to earthquakes [48], hospital organisation [49], locating
logistics centers for disasters [50], risk of hazardous materials
transportation [51], power-plan risks [52], and risks for assem-
bling satellites [53].

Saaty and Tran [54] explicitly criticised the fuzzification of
the AHP method and stated that there is already uncertainty
inherent in the nature of the method: i.e. the comparison
judgements are already fuzzy because they are allowed to
vary over the values of a scale. However, comparisons have
been done for AHP and FAHP by comparing their results with
those of experts and, in general, using FAHP leads to better
model outcomes than the AHP. More discussion on this issue is
provided later in the paper. For now, our research has employed
the FAHP within a new framework to build the set of fuzzy
rules.

IV. PROPOSED FUZZY MODEL

As systems modelling is an abstraction (or simplification)
of reality, it is important to consider the different types of
uncertainty that may be involved in the modelling process and
how they can be represented. Improper identification and/or
estimation of uncertainty will reduce the usefulness of model
outcomes as well as the power of the knowledge embedded in
the model [55]. According to Walker et al. [56], uncertainty
can be due to lack of knowledge (epistemic uncertainty) or
due to natural variability (variability uncertainty) inherent in
the system under study. In our problem, condition prediction
of PCCP water pipes, uncertainty may come from the inherent
resolution of the testing technology, the natural variability
of input data (time-dependent), the imprecision of natural
language that measures qualitative data, the interpretation of
test signals converted into quantitative numbers and experts
intuitive knowledge of formulating the relationships between
variables. Fuzzy sets and fuzzy numbers based on linguistic
variables are therefore an appropriate approach.

A. Model Construction
PCCP condition assessment data are organized in a three-

level structure, as shown in Figure 2. It is designed to consider
the type and possible effect of the condition data so that it
better reflects the variable relationships and their interaction.

 

 
 

 

 
 

 
 

 
 

 
 

 

Fig. 2. PCCP condition prediction model structure where data are organized
into concepts interacting together towards the overall pipe condition.

We select the concept Prestressed Wires Condition (PWC)
with the variables Total Wire Breaks (TWB), Maximum Wire
Breaks per Positions (MWBpP) and Number of Wire Breaks
Positions (WBP) to explain the proposed fuzzy methodology
(i.e. fuzzy rules construction and fuzzy inference process).
Both the concept and variables are assigned linguistic val-
ues/labels represented by triangular membership functions. The
membership functions for the concept and variables are derived
from experience and empirical studies. Figure 3 shows the
membership function for PWC and TWB.
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Fig. 3. Membership functions for the concept PWC and the variable TWB.

The knowledge base of the proposed model is represented
by a set of If-Then fuzzy rules illustrating the relationship
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between inputs and output. An example of the fuzzy rules
structure in a symbolic form is given next, where xi is the
ith input variable (i=1, 2, ..., n), y is the output variable, Aik

is the linguistic value (fuzzy set) of the ith input variable in
kth rule (k=1, 2, ..., r), Bk is the linguistic value (consequent
fuzzy set) of the output variable in kth rule, n is the number
of input variables, and r is the number of rules.

IF x1 is A1k AND x2 is A2k ..... AND xn is Ank THEN y is Bk

1) Fuzzy Rules Construction Algorithm:
Step 1: Determine all possible combinations of vari-

ables with their different values. In our example, we have
three variables that contribute to a concept (two variables
with five linguistic values and the other with four linguistic
values). Then there will be 100 combinations of variable
values (5×5×4) that represents the entire relationship between
variables, as shown in Figure 4. Each combination of vari-
ables’s values represents the antecedent of the rule and their
collective impact is computed and then fuzzified to determine
the consequent (output linguistic value) of the rule. In this way,
100 rules will be generated to calculate this concept.
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Fig. 4. Variable combinations for concept PWC. The yellow oval shapes are
the linguistic values associated with each variable, and their acronyms shown

are: N=None, L=Low, M=Moderate, H=High, VH=Very High, S=Single,
D=Double and ML=Multiple. The blue oval shapes are the aggregate effect
of variable combination on the concept PWC that needs to be calculated.

Step 2: Compute variables’ fuzzy weights:

a) Obtaining pairwise comparison matrix: First, we
construct a matrix that the rows and columns contain the
same variables in the same order. Then, for each row, we ask
the experts to compare the variable in the row with respect
to each variable in the columns and express their opinion
linguistically according to the fuzzy comparison scale shown
in Figure 5, which is an extension to the crisp comparison scale
originally developed by Saaty [45]. Only the right upper half
of the matrix is filled directly by experts’ judgement, while
the other half is filled by taking the reciprocal values. For
example, if comparing TWB to MWBpP was given a relative
importance of (4,5,6), then comparing MWBpP to TWB has
to be given a relative importance of (1/6,1/5,1/4). Because we
have three variables in our example, we need to ask the expert
to answer three pairs of comparisons. The number of pairwise
comparisons needed is calculated based on this equation: n(n-
1)/2, where n is the number of variables. An example of

the questions asked is “Which of the variables, Total Wire
Breaks and Maximum Wire Breaks per Positions, is the most
important for assessing Prestressed Wires Condition and how
does its importance compare to the other?”. In our example,
the pairwise comparison matrix of the variables is shown in
Table I.

Fig. 5. Fuzzy comparison scale between variables.

TABLE I. Pairwise Comparison Matrix of the Variables

Variable TWB MWBpP WBP

TWB (1,1,1) (1,1,2) (4,5,6)
MWBpP (1/2,1,1) (1,1,1) (4,5,6)
WBP (1/6,1/5,1/4) (1/6,1/5,1/4) (1,1,1)

Csutora and Buckley [57] proved that the fuzzy pairwise
comparison matrix is considered consistent if the correspond-
ing crisp pairwise comparison matrix is consistent. The crisp
format of the fuzzy pairwise comparison matrix shown in
Table I is constructed, by considering the median value of the
triangular fuzzy number, and the consistency ratio is calculated
based on λmax procedure (for more details the reader is
referred to [45]). It has been found that the crisp format of the
pairwise comparison matrix is consistent which means that the
fuzzy pairwise comparison matrix is also consistent.

b) Compute normalized fuzzy weights of variables:
There are several methods for estimating the normalized fuzzy
weights. Three of them have been applied to the fuzzy pairwise
comparison data: row means with geometric normalization;
row means with columns sum normalization; and geometric
means with fuzzy division normalization. In order to select
the most appropriate method for representing data, the mean
relative fuzziness for pairwise comparison data and resulting
weights are calculated and compared [58]. Equations (1) and
(2) show how the mean relative fuzziness is calculated.

FuD =
1

n2

n∑

i,j=1

uij − lij
mij

(1)

FuW =
1

n

n∑

i=1

uw
i − lwi
mw

i

(2)

Where FuD is the mean relative fuzziness of data, lij , mij

and uij are the lower-bound, the median and the upper-bound
of the triangular fuzzy ratio of variables i and j, respectively,
FuW is the mean relative fuzziness of resulting weights, lwi ,
mw

i and uw
i are the lower-bound, the median and the upper-

bound of the triangular fuzzy weight of variable i, respectively.
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ij , u

G
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lGij
(
∑n

i=1 l
G
ij

∑n
i=1 u

G
ij)

1/2
,

mG
ij∑n

i=1 m
G
ij

,
uG
ij

(
∑n

i=1 l
G
ij

∑n
i=1 u

G
ij)

1/2
) (3)

FWi = (lFW
i ,mFW

i , uFW
i ) = (

∑n
j=1 l

G
ij

n
,

∑n
j=1 m

G
ij

n
,

∑n
j=1 u

G
ij

n
) (4)

CIk = (lCI
k ,mCI

k , uCI
k ) = (

n∑

i=1

lFW
i × lV I

i ,

n∑

i=1

mFW
i ×mV I

i ,

n∑

i=1

uFW
i × uV I

i ) (5)

Applying equations (1) and (2), the FuD is 0.348 and
FuW is 0.337, 0.707, and 0.708 for the methods row means
with geometric normalization, row means with columns sum
normalization and geometric means with fuzzy division nor-
malization respectively. It is noted that the comparison data
and the row means with geometric normalization method
resulted in almost the same relative fuzziness which indicating
that this method is the most appropriate for representing
the fuzzy pairwise comparison ratios, and accordingly it has
been selected for application in rule construction. A graphical
comparison of FuD and FuW for the entire model structure
is presented in Section V.

Equations (3) and (4) show how the normalized fuzzy
weights are calculated using the selected method, and Table II
shows the computed normalized fuzzy weights for our exam-
ple, where G is a column-normalized matrix using geometric
fuzzy normalization and FW is the normalized triangular
fuzzy weights.

TABLE II. Normalized Fuzzy Weights of the Variables on the Concept PWC.

Variable Normalized Fuzzy Weight

TWB (0.421,0.455,0.608)
MWBpP (0.335,0.445,0.483)
MWB (0.080,0.091,0.105)

The resulting fuzzy weights have also been checked for
normalization and they satisfy the conditions of fuzzy numbers
normalization. For more details about normalization of fuzzy
numbers, see [58], [59], [60].

Step 3: Experts are asked to express their opinion
regarding the effect of each value of an individual variable on
the output concept as a linguistic value according to a fuzzy
condition assessment scale. In our example, it is equivalent
to the fuzzy membership function scale of the concept PWC
shown in Figure 3. A sample of the questions asked is “What
would be the potential impact of Low number of Wire Breaks
on Prestressed Wires Condition?”.The number of questions
to be asked to the experts are equal to the total number of
variables values. In our example, we need to ask 14 questions.
The linguistic values obtained from experts are then converted
into triangular fuzzy numbers, as shown in Table III.

Step 4: Obtain the collective fuzzy impact for each
combination of variables values by multiplying the variables
fuzzy weight (obtained in step 2) and their fuzzy impact
(obtained in step 3). The aggregation of the multiplication
would result in a collective fuzzy impact of the variables’
combination on the concept, which is represented as a trian-
gular fuzzy number. This is done using equation (5), where

TABLE III. Impact of Variables’ Values on the Concept PWC.

Variable Value Impact on PWC Fuzzy Number

TWB None Excellent (0,0,50)
Low Good (0,25,50)
Moderate Moderate (25,50,75)
High Poor (50,75,100)
Very High Critical (50,100,100)

MWBpP None Excellent (0,0,50)
Low Good (0,25,50)
Moderate Moderate (25,50,75)
High Poor (50,75,100)
Very High Critical (50,100,100)

WBP None Excellent (0,0,50)
Single Moderate (25,50,75)
Double Poor (50,75,100)
Multiple Critical (50,100,100)

CIk is the collective fuzzy impact of the kth combination,
V Ii = (lV I

i ,mV I
i , uV I

i ) is a triangular fuzzy number repre-
senting the impact of the variable i on the concept, and n is
the number of variables in the combination.

Consider the variable combination of rule R2 (see Fig-
ure 4) where TWB=None, MWBpP=None and WBP=Single.
Applying equation 5 using arithmetic operations of fuzzy
numbers, the resulting collective fuzzy impact CI2 =
(lCI
2 ,mCI

2 , uCI
2 ) = (2.011, 4.545, 62.440).

The collective fuzzy impact, CIk, is calculated in the same
way for all variables combinations. However, in some cases
the resulting collective fuzzy impact goes outside the range
of possible values for the membership function scale of the
concept (i.e. goes farther than 100). This is expected because
the sum of the upper-bounds (ui) of the normalized fuzzy
weights of the variables is always greater than 1, which is
one of the conditions of fuzzy weights normalization. In our
example, the sum of variables’ normalized fuzzy weights is
(0.836,1.00,1.196), which is a fuzzy number centred around 1.

Step 5: Determine the linguistic value of the rule
output. This is done by mapping the triangular fuzzy number
of the collective impact (obtained in step 4) on the fuzzy
condition assessment scale of the concept. This produces a
fuzzy set of the intersections of the collective fuzzy impact and
the linguistic values of the scale. The linguistic values shown
in the fuzzy condition assessment scale represent different al-
ternatives to the rule output and the membership grades of their
intersection could be interpreted as the degree of preference of
the alternatives. Accordingly, the resulting membership grades
of the intersection for every combination of variables are
ranked and the linguistic value with the highest membership
grade of intersection is selected to be the output (consequent)
linguistic value of the rule. Equation (6) illustrates how the
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highest membership grade, μCI
k , is calculated, where μCI(x)

is the membership function of the collective impact, μi(x)) is
the membership function of the ith linguistic value of the fuzzy
condition assessment scale and s is the number of linguistic
values (condition states).

μCI
k = max(

s⋃

i=1

(μCI(x) ∩ μi(x))) (6)

For illustration, Figure 6 shows the mapping of the col-
lective fuzzy impact, CI2, calculated in the previous step, on
the fuzzy membership function scale of PWC. It provides a
graphical interpretation to the extent of collective impact of
this combination of variables on the concept PWC.
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Fig. 6. Mapping of the collective fuzzy impact on the fuzzy membership
function scale. The black line shows the intersection of the collective fuzzy

impact and each of the condition states (linguistic values). The resulting
membership grades; 0.913, 0.753, 0.452, 0.150 and 0.115 represent the

degree of support of the condition states Excellent, Good, Moderate,Poor,
and Critical, respectively, in the concept PWC.

Accordingly, for rule 2, the output linguistic value is se-
lected to be Excellent because it holds the highest membership
grade of the intersection, μCI

2 =0.913. This membership grade
could also be interpreted as a degree of confidence in the
selected linguistic value, and thus considered as a rule weight.
The mapping operation shown above is carried out for all
collective fuzzy impacts of the 100 variable combinations and
the fuzzy rules are then generated.

2) Fuzzy inference algorithm:

Step 1: Starting with the first level of the hierarchy
structure, apply the following steps for every concept in the
level.

a) Fuzzification of the input variables: The crisp (real)
values of the concept’s input variables are fuzzified in order to
determine the membership grade associated with each linguis-
tic value of the input variable, that is, each input is fuzzified
(mapped) over all membership functions required by the rules.
The membership grade, μij(xi), of variable i associated with
the linguistic value j is determined using equation (7), where
x is the crisp value that needs to be fuzzified.

μij(x) = max(min(
x− aij
bij − aij

,
cij − x

cij − bij
), 0) (7)

b) Rule evaluation:

b.1) Antecedent evaluation: The antecedent (condition)
part of the rule is evaluated to determine its firing strength
(activation degree) using an appropriate fuzzy operator. The
input to this operation is the membership grades for each
membership function (obtained in step (a)) and the output
is a single value representing firing strength of the rule. The
firing strength of the kth rule, αk, is calculated using the fuzzy
intersection operation shown in equation (8), where k=1, 2, 3,
...r (the number of rules), n is the number of variables.

αk =

n⋂

i=1

μik(xi) (8)

b.2) Weighing the rules: All fired rules in the rule set
are then weighted by multiplying their firing strength (obtained
in (b.1)) and the membership grade associated with their conse-
quent linguistic value, μCI

k , (obtained in step 5 of the fuzzy rule
construction algorithm). The weighted firing strength of the
kth rule, αwt

k , is calculated using the multiplication operation
shown in equation (9).

αwt
k = αk(·)μCI

k (9)

b.3) Consequent evaluation: The output fuzzy set of
the kth rule, Fk(y), is obtained by reshaping (truncating) the
consequent membership function of the rule using the weighted
firing strength (obtained in (b.2)). This operation is illustrated
in equation (10).

Fk(y) = αwt
k

⋂
γk (10)

Where γk is the consequent membership function of the
kth rule’s linguistic value.

c) Aggregation of rules outputs: All output fuzzy sets
of the rules (obtained in (b.3)) are aggregated by using the
fuzzy union operator in order to obtain a single fuzzy set, F (y),
for the output variable (concept). This operation is illustrated
in equation (11).

F (y) =

r⋃

k=1

Fk(y) (11)

Step 2: Move on to the second level of the hierarchy
structure and repeat step 1 by applying only sub-steps (b) and
(c), i.e., the output of the first level is passed to the second
level as a fuzzy value so that fuzzification of the input variables
(step (a)) is no longer needed.

Step 3: If the hierarchy structure has two levels, then
stop and go to step 4. Otherwise, move on to the subsequent
level and repeat step 2. Continue the process until all levels
of the hierarchy are evaluated. In either case, a fuzzy set of
membership grades representing the pipe condition is obtained.
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Step 4: Apply an appropriate defuzzification method
to convert the output fuzzy set into a crisp format so that the
overall condition of the pipe can either be represented in a
fuzzy or crisp value.

An example of the inference network that illustrates how
the knowledge is processed to estimate the condition of
prestressed wires is shown in Figure 7. At first, real-world
data are entered into the model and then translated into fuzzy
membership grades (MG) having a value from 0 to 1. These
MGs represent the variable’s degree of support in its states.
In the example presented (Figure 7), 140-wire breaks in the
pipe generated 0.167 and 0.385 membership grades of states
Moderate and High, respectively. Each state (linguistic value)
is represented by a triangular membership function. The MGs
obtained are then analyzed based on the process described
in the inference algorithm. It can be seen that only 4 rules
are fired in this example. Consider the first rule on the left-
side of the diagram. The firing strength 0.167, above the
blue oval shape with the intersection mark, is multiplied by
the rule weight, 0.857, producing a weighted firing strength,
0.143, that modifies the output fuzzy set “Poor” of the rule.
The four fired rules are evaluated in the same way and their
output fuzzy sets are then aggregated to get the fuzzy set
of MG contributions to the concept, (0/Excellent, 0/Good,
0/Moderate, 0.321/Poor, 0.215/Critical). Consequently,
the concept PWC of the pipe would be represented by two
contiguous condition states, “Poor” and “Critical” with a
degree of support 0.321 and 0.215, respectively, as shown in
Figure 7. The output fuzzy set of MGs could be defuzzified
into a single crisp value using an appropriate defuzzification
method. Obviously, getting the output in either crisp or fuzzy
format depends on the application but it is worth noting that
defuzzification into a crisp format loses some information
about the condition that might be helpful for further actions.
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Fig. 7. Illustration of how knowledge is processed to calculate the concept
PWC based on the fuzzy inference process presented in this paper. The crisp

values of input variables are shown in the brackets, while MGs produced
during processes appear next to vertical and inclined lines. The yellow oval

shapes represent the states (membership functions of linguistic values)
associated with the variables and concept, and their acronyms shown are:

M=Moderate, H=High, VH=Very High and ML=Multiple. The smaller blue
ovals represent the fuzzy logical operations performed in the inference

process, as labeled on the shape.

V. MODEL APPLICATION AND RESULTS

The proposed fuzzy methodology has been applied to real-
world data from the Man-Made River Project (MMRP) in
Libya, one of the world’s largest water supply projects that
uses large diameter PCCP pipes, to estimate pipe condition
based on the structure presented in Figure 2. For validation
purposes, two models have been constructed. The first model
was constructed based on the full fuzzy environment method
presented in the paper. The three methods of estimating the
normalized fuzzy weights based on FAHP approach indicated
in the fuzzy rules construction algorithm have been applied to
calculate the sets of normalized fuzzy weights for variables and
concepts. The mean relative fuzziness of the weights (FuWi)
were calculated and compared, as shown in Figure 8. It has
been concluded that the row means with geometric normal-
ization method is the most appropriate for representing the
fuzzy pairwise comparison ratios for all sets of variables and
concepts because it gives almost the same relative fuzziness
of the comparison ratios, which means that it preserves the
fuzziness that the experts gave in their judgments.

In the second model, we made some changes in the
methodology so that we used a crisp format for variable
weights that have been calculated by the conventional AHP
method.
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Fig. 8. Mean relative fuzziness of weights calculated by three methods
(FuWi). The method row means with geometric normalization gives almost

the same relative fuzziness of pairwise comparison data.

The two models have been applied to a sample of 100
records of data and their outcomes were compared to actual
condition outcomes (i.e. Excellent, Good, Moderate, Poor or
Critical) estimated by a domain expert. False Positive and
False Negative analyses have been carried out in order to
estimate the performance of each model. In this paper, we set
the following definitions for false positive and false negative:

False positive: is when the outcome condition of the model
is worse than the actual condition outcome (i.e. the model
gives pessimistic or overestimated results), and

False negative: is when the outcome condition of the model
is better than the actual condition outcome (i.e. the model gives
optimistic or underestimated results).

Figure 9 shows a summary of the comparisons between
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actual and model outcomes. The most important to note is the
relatively high number of false negatives (i.e. 20 outcomes out
of the total 100) yielded by the second model that uses the
crisp weights. Further examination of the results found that all
20 outcomes are classified as Critical by the expert, which the
second model failed to predict. This may be due to the amount
of information lost by using crisp weights. False negatives are
critical because they mean the model is underestimating the
poor quality of pipes. An estimated pipe condition of Good
when it is really Poor or Critical could lead to a sudden
failure of the pipe with serious consequences (e.g. repair costs,
environment damage, water interruption, loss of services). The
false positive outcomes have less effect because overestimating
poor condition simply leads to the cost of an extra inspection
and monitoring.
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Fig. 9. Actual vs models outcomes. The blue bars represent the first model
that uses triangular fuzzy weights and the orange bars represent the second

model that uses crisp weights.

VI. CONCLUSION AND FUTURE WORK

This paper has described a new methodology for eliciting
and processing human expertise using a hierarchical fuzzy
rule-based model. It employs fuzzy numbers for transforming
and combining experts’ opinions where fuzziness is maintained
throughout the whole process, such that there is no loss of
uncertainty information. In addition, weights of input variables
are automatically incorporated into the rule so that they carry
through to the inference network and allow for better uncer-
tainty propogation through the system. The paper showed that
the use of fuzzy or crisp weights leads to different results,
with a better model performance in case of employing fuzzy
weights.

In high-dimensional systems, a large number of rules might
be required to produce accurate results. Eliciting the rules
directly from experts in such cases would be a very difficult
task, if not impossible. The advantage of the proposed fuzzy
rule elicitation method is that knowledge engineering is not
directly generating rules from experts but is providing the
expertise that enables the system to generate the rules itself:
rule complexity is now independent of the experts and does
not constitute such a problem for them.

Future work will include testing the proposed model for
generic efficacy by applying it to mental-health risk evaluation.
It is a suitable domain for testing because the input data
are based on human judgments as well as more objective
measurements and the system’s inherent uncertainty is higher.
If the proposed research produces fuzzy methods that can
consistently improve automated decision making, it will be an
important step in validating and exploiting human expertise for
decision support systems in these types of knowledge domains.

REFERENCES

[1] ASCE, Report Card for America’s Infrastructure. American Society
of Civil Engineering, 2013.

[2] M. Makar and Y. Kleiner, “Maintaining water pipeline integrity,” in
AWWA Infrastructure Conference and Exhibition, 2000, Conference
Proceedings, pp. 78–93.

[3] Y. Kleiner and B. Rajani, “Comprehensive reviews of structural
deterioration of water mains: statistical models,” Urban Water
Journal, vol. 3, no. 3, pp. 131–150, 2001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1462075801000334

[4] P. Rizzo, “Water and Wastewater Pipe Nondestructive Evaluation and
Health Monitoring: A Review,” Advances in Civil Engineering, 2010.
[Online]. Available: http://dx.doi.org/10.1155/2010/818597

[5] Z. Liu, Y. Kleiner, B. Rajani, L. Wang, and W. Condit, Condition
Assessment Technologies for Water Transmission and Distribution Sys-
tems. U.S. Environmental Protection Agency, 2012.

[6] Z. Liu and Y. Kleiner, “State of the art review of
inspection technologies for condition assessment of water pipes,”
Measurement, vol. 46, no. 1, pp. 1–15, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0263224112002412

[7] M. Zarghamee, R. Ojdrovic, and P. Nardini, Best Practices Manual for
Prestressed Concrete Pipe Condition Assessment: What Works? What
Doesnt? Whats Next? Water Research Foundation, 2012.

[8] Y. Le Gat and P. Eisenbeis, “Using Maintenance Records
to Forecast Failures in Water Networks,” Urban Water,
vol. 2, no. 3, pp. 173–181, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1462075800000571

[9] G. Pelletier, A. Mailhot, and J. Villeneuve, “Modeling Water Pipe
BreaksThree Case Studies,” Journal of Water Resources Planning and
Management, vol. 129, no. 2, pp. 115–123, 2003.

[10] Y. Wang, T. Zayed, and O. Moselhi, “Prediction models for annual break
rates of water mains,” Journal of performance of constructed facilities,
vol. 23, no. 1, pp. 47–54, 2009.

[11] Z. Liu, Y. Hu, and W. Wu, “Pipe Performance Analysis with Non-
parametric Regression,” in SPIE, Nondestructive Characterization for
Composite Materials, Aerospace Engineering, Civil Infrastructure, and
Homeland Security, vol. 7983, 2011, Conference Proceedings, pp. 1–9.

[12] M. Poulton, Y. Le Gat, and B. Brmond, “The impact of pipe segment
length on break predictions in water distribution systems,” in Strategic
Asset Management of Water Supply and Wastewater Infrastructure: In-
vited Papers from the IWA Leading Edge Conference on Strategic Asset
Management (LESAM), Lisbon. IWA Publishing, 2007, Conference
Proceedings, p. 419.

[13] A. Wood and B. Lence, “Using water main break data to improve asset
management for small and medium utilities: district of maple ridge,
BC,” Journal of Infrastructure Systems, vol. 15, no. 2, pp. 111–119,
2009.

[14] Y. Kleiner, B. Rajani, and S. Wang, “Consideration of static and
dynamic effects to plan water main renewal,” Middle East Water, pp.
1–13, 2007.

[15] P. Davis, S. Burn, M. Moglia, and S. Gould, “A Physical Probabilistic
Model to Predict Failure Rates in Buried PVC Pipelines,” Journal of
Reliability Engineering and System Safety, vol. 92, no. 9, pp. 1258–
1266, 2007.

[16] M. Moglia, P. Davis, and S. Burn, “Strong Exploration of a Cast Iron
Pipe Failure Model,” Journal of Reliability Engineering and System
Safety, vol. 93, no. 6, pp. 885–896, 2008.

978-1-5090-5443-5/17/$31.00 c©2017 IEEE 38 | P a g e



Computing Conference 2017
18-20 July 2017 | London, UK

[17] R. Francis, S. Guikema, and L. Henneman, “Bayesian Belief
Networks for predicting drinking water distribution system
pipe breaks,” Reliability Engineering and System Safety,
vol. 130, no. 0, pp. 1–11, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0951832014000921

[18] G. Kabir, S. Tesfamariam, A. Francisque, and R. Sadiq,
“Evaluating Risk of Water Mains Failure Using a Bayesian
Belief Network Model,” European Journal of Operational Research,
vol. 240, no. 1, pp. 220–234, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377221714005360

[19] N. Kasabov, Foundations of Neural Networks, Fuzzy Systems, and
Knowledge Engineering. Massachusetts Institute of Technology, 1996.

[20] K. Manhart, “Artificial Intelligence Modelling: Data Driven and Theory
Driven Approaches.” Springer, 1996, Conference Paper.

[21] M. Najafi and G. Kulandaivel, “Pipeline Condition Prediction Using
Neural Network Models,” in Pipelines 2005: Optimizing Pipeline De-
sign, Operations, and Maintenance in Today’s Economy, C. Vipulanan-
dan and R. Ortega, Eds. American Society of Civil Engineers (ASCE),
2005, Conference Proceedings, pp. 767–781.

[22] H. Al-Barqawi and T. Zayed, “Condition Rating Model for Underground
Infrastructure Sustainable Water Mains,” Journal of Performance of
Constructed Facilities, vol. 20, no. 2, pp. 126–135, 2006.

[23] D. Achim, F. Ghotb, and K. McManus, “Prediction of Water Pipe Asset
Life Using Neural Networks,” Journal of Infrastructure Systems, vol. 13,
no. 1, pp. 26–30, 2007.

[24] Z. Geem, C. Tseng, J. Kim, and C. Bae, “Trenchless Water Pipe
Condition Assessment Using Artificial Neural Network,” in Pipelines
2007: Advances and Experiences with Trenchless Pipeline Projects,
M. Najafi and L. Osborn, Eds. American Society of Civil Engineers
(ASCE), 2007, Conference Proceedings, pp. 1–9.

[25] G. Morcous, H. Rivard, and A. Hanna, “Modeling Bridge Deterioration
Using Case-based Reasoning,” Journal of Infrastructure Systems, ASCE,
vol. 8, no. 3, pp. 86–95, 2002a.

[26] G. Morcous, H. Rivard, and A. Hanna, “Case-Based Reasoning System
for Modeling Infrastructure Deterioration,” Journal of Computing in
Civil Engineering, ASCE, vol. 16, no. 2, pp. 104–114, 2002b. [Online].
Available: http://cedb.asce.org/cgi/WWWdisplay.cgi?131250

[27] A. Aamodt and E. Plaza, “Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches,” Artificial Intelli-
gence Communications, IOS Press, vol. 7, no. 1, pp. 39–59, 1994.

[28] W. Siler and J. Buckley, Fuzzy Expert Systems and Fuzzy Reasoning.
Hoboken, New Jersey, USA: John Willey and Sons, Inc, 2005.

[29] L. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, pp. 338–353,
1965.

[30] W. Pedrycz and F. Gomide, An Introduction of Fuzzy Sets: Analysis and
Design. Massachusetts Institute of Technology, 1998.

[31] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic Theory and
Applications. Upper Saddle River, New Jersey: Prentice Hall PTR,
1995.

[32] Y. Kleiner, R. Sadiq, and B. Rajani, “Modeling Failure Risk in
Buried Pipes Using Fuzzy Markov Deterioration Process,” in Pipeline
Engineering and Construction, J. Galleher and M. Stift, Eds. American
Society of Civil Engineers (ASCE), 2004, Conference Proceedings,
pp. 1–12. [Online]. Available: http://dx.doi.org/10.1061/40745(146)7

[33] H. Najjaran, R. Sadiq, and B. Rajani, “Modeling Pipe Deterioration
Using Soil Properties - An Application of Fuzzy Logic Expert
System,” in Pipeline Engineering and Construction, J. Galleher and
M. Stift, Eds. American Society of Civil Engineers (ASCE),
2004, Conference Proceedings, pp. 1–10. [Online]. Available:
http://dx.doi.org/10.1061/40745(146)73

[34] B. Rajani, Y. Kleiner, and R. Sadiq, “Translation of Pipe Inspection
Results into Condition Rating Using Fuzzy Synthetic Evaluation Tech-
nique,” Journal of Water Supply Research and Technology, vol. 55,
no. 1, pp. 11–24, 2006.

[35] H. Fares and T. Zayed, “Risk Assessment for Water Mains Using
Fuzzy Approach,” in Construction Research Congress, S. Ariaratnam
and E. Rojas, Eds. American Society of Civil Engineers (ASCE),
2009, Conference Proceedings, pp. 1125–1134. [Online]. Available:
http://dx.doi.org/10.1061/41020(339)114

[36] V. Adriaenssens, B. De Baets, P. Goethals, and N. De Pauw, “Fuzzy
Rule-based Models for Decision Support in Ecosystem Management,”
Science of the Total Environment, vol. 319, no. 1, pp. 1–12, 2004.

[37] V. Torra, “A Review of the Construction of Hierarchical Fuzzy Sys-
tems,” International Journal of Intelligent Systems, vol. 17, no. 5, pp.
531–543, 2002.

[38] D. Wang, X. Zeng, and J. Keane, “A Survey of Hierarchical Fuzzy
Systems,” International Journal of Computational Cognition, vol. 4,
no. 1, pp. 18–29, 2006.

[39] S. Verma and S. Chaudhri, “Integration of fuzzy reasoning approach
(FRA) and fuzzy analytic hierarchy process (FAHP) for risk assessment
in mining industry,” Industrial Engineering and Management, vol. 7,
no. 5, pp. 1347–1367, 2014.

[40] M. An, Y. Chen, and C. J. Baker, “A fuzzy reasoning and fuzzy-
analytical hierarchy process based approach to the process of railway
risk information: A railway risk management system,” Information
Sciences, vol. 181, no. 18, pp. 3946–3966, 2011.

[41] A. Bardossy, L. Duckstein, and I. Bogardi, “Combination of fuzzy
numbers representing expert opinions,” Fuzzy Sets and Systems, vol. 57,
no. 2, pp. 173–181, 1993.

[42] D. Dubois and H. Prade, “Operations on fuzzy numbers,” International
Journal of Systems Science, vol. 9, no. 6, pp. 613–626, 1978. [Online].
Available: http://dx.doi.org/10.1080/00207727808941724

[43] S. Gao, Z. Zhang, and C. Cao, “Multiplication operation on fuzzy
numbers,” Journal of Software, vol. 4, no. 4, pp. 331–338, 2009.

[44] J. Fodor and B. Bede, “Arithmetics with fuzzy numbers: a comparative
overview,” in Proceeding of 4th Slovakian-Hungarian Joint Symposium
on Applied Machine Intelligence, Herlany, Slovakia, 2006, Conference
Proceedings.

[45] T. L. Saaty, The Analytic Hierarchy Process. New York: McGraw-Hill
New York, 1980.

[46] J. J. Buckley, “Fuzzy hierarchical analysis,” Fuzzy Sets and
Systems, vol. 17, no. 3, pp. 233–247, 1985. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0165011485900909

[47] L. Mikhailov and P. Tsvetinov, “Evaluation of Services Using a Fuzzy
Analytic Hierarchy Process,” Applied Soft Computing, vol. 5, no. 1, pp.
23–33, 2004.

[48] R. Aghataher, M. Delavar, M. Nami, and N. Samnay, “A fuzzy-AHP
Decision Support System for Evaluation of Cities Vulnerability Against
Earthquakes,” World Applied Sciences Journal, vol. 3, no. 1, pp. 66–72,
2008.

[49] H. Tsai, C. Chang, and H. Lin, “Fuzzy Hierarchy Sensitive with
Delphi Method to Evaluate Hospital Organization Performance,” Expert
Systems with Applications, vol. 37, no. 8, pp. 5533–5541, 2010.

[50] B. Turgut, G. Tas, A. Herekoglu, H. Tozan, and O. Vayvay, “A Fzzy
AHP based Decision Support System for Disaster Center Location
Selection and a Case Study for Istanbul,” Disaster Prevention and
Management: An International Journal, vol. 20, no. 5, pp. 499–520,
2011.

[51] S. Namee, B. Witchayangkoon, and A. Karoonsoontawong, “Fuzzy
Logic Modeling Approach for Risk Area Assessment for Hazardous
Materials Transportation,” American Transactions on Engineering and
Applied Sciences, vol. 1, no. 2, pp. 127–142, 2012.

[52] S. Zegordi, E. Nik, and A. Nazari, “Power Plant Project Risk Assess-
ment Using a Fuzzy-ANP and Fuzzy-TOPSIS Method,” International
Journal of Engineering-Transactions B: Applications, vol. 25, no. 2, p.
107, 2012.

[53] J. Tian and Z. Yan, “Fuzzy Analytic Hierarchy Process for Risk
Assessment to General-assembling of Satellite,” Journal of applied
research and technology, vol. 11, no. 4, pp. 568–577, 2013.

[54] T. L. Saaty and L. T. Tran, “On the invalidity
of fuzzifying numerical judgments in the analytic hi-
erarchy process,” Mathematical and Computer Modelling,
vol. 46, no. 78, pp. 962–975, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0895717707000787

[55] J. A. E. B. Janssen, M. S. Krol, R. M. J. Schielen, A. Y.
Hoekstra, and J. L. de Kok, “Assessment of uncertainties in
expert knowledge, illustrated in fuzzy rule-based models,” Ecological
Modelling, vol. 221, no. 9, pp. 1245–1251, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304380010000505

978-1-5090-5443-5/17/$31.00 c©2017 IEEE 39 | P a g e



Computing Conference 2017
18-20 July 2017 | London, UK

[56] W. E. Walker, P. Harremos, J. Rotmans, J. P. van der Sluijs, M. B. A.
van Asselt, P. Janssen, and M. P. Krayer von Krauss, “Defining Uncertai
nty: A Conceptual Basis for Uncertainty Management in Model-Based
Decision Support,” Integrated Assessment, vol. 4, no. 1, pp. 5–17,
2003. [Online]. Available: http://dx.doi.org/10.1076/iaij.4.1.5.16466

[57] R. Csutora and J. J. Buckley, “Fuzzy hierarchical analysis:
the lambda-max method,” Fuzzy Sets and Systems, vol.
120, no. 2, pp. 181–195, 2001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0165011499001554

[58] P. T. Chang and E. S. Lee, “The estimation of normalized
fuzzy weights,” Computers and Mathematics with Applications,
vol. 29, no. 5, pp. 21–42, 1995. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/089812219400246H

[59] O. Pavlacka and J. Talasova, “Applications of the fuzzy weighted
average of fuzzy numbers in decision making models,” in EUSFLAT
Conf.(2), 2007, Conference Proceedings.

[60] P. Sevastjanov, P. Bartosiewicz, and K. Tkacz, A New Method for
Normalization of Interval Weights. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 466–474.

978-1-5090-5443-5/17/$31.00 c©2017 IEEE 40 | P a g e



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


