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Abstract - Probabilistic models can be a combination of graph 

and probability theory that provide numerous advantages 

when it comes to the representation of domains involving 

uncertainty. In this paper, we present the development of a 

chain graph for assessing the risks associated with mental 

health problems, which is a domain that has high amounts of 

inherent uncertainty. The Galatean mental health Risk and 

Social care Tool, GRiST, has been developed to support 

mental-health risk assessments by using a psychological model 

to represent the expertise of mental-health practitioners.  It is a 

hierarchical knowledge structure based on fuzzy sets for 

reasoning with uncertainty. This paper describes how a chain 

graph can be developed from the psychological model to 

provide a probabilistic evaluation of risk that complements the 

one generated by GRiST’s clinical expertise.  

Keywords- mental health risk assessment; probability graphs; 

chain graphs. 

I.  INTRODUCTION  

Risk assessment is a fundamental part of life, whether it 
be a mundane decision about the chance of rain or a much 
more vital one about the risk of a nuclear power station 
malfunctioning. In the mental-health domain, predicting 
whether someone is going to commit suicide or engage in an 
act of violence is extremely difficult, partly because the 
likelihoods are so low but also because of the lack of 
statistical data. The Galatean mental-health Risk and Social 
care assessment Tool (GRiST, [1]) was developed to address 
these problems by modelling how expert mental-health 
practitioners make risk assessments. However, its 
accumulating database of risk data has become a resource for 
more probabilistic approaches such as probability graphs, 
which are well-suited for capturing and reasoning with 
uncertainty where there is prior knowledge structuring [2].  

In the past, mental health risk assessment was 
predominantly carried out using unstructured clinical 
approaches but it has since been realised that the best results 
can be obtained by using a combination of both structured 
clinical judgements and actuarial tools, such as one based on 
a probability graphical model [3]. This paper explores how a 
probability chain graph can be developed from the GRiST 
model of expertise to perform mental health risk 
assessments. In Section II, a brief overview of related work 
is given. In Section III, the background to mental-health risk 
assessment and GRiST is briefly introduced, followed by a 

discussion of the types of building blocks used in probability 
graphs in Section IV. In Section V, the development of the 
composite GRiST probability chain graph from these 
building blocks is presented. The paper then concludes with 
an outline of future work for the research.  

II. RELATED WORK 

The challenge of providing effective risk assessment in the 

mental health domain is not a new one. The two broad 

approaches used are the clinical and actuarial approaches. 

The clinical approach can be split into structured and 

unstructured methods. Both are based on a clinician‟s 

experience but the unstructured method has no other input 

and is thus highly subjective. The structured clinical 

approach is more formal because it links the clinician‟s 

judgement with data-gathering tools that help guide the 

collection of information. In contrast, the actuarial approach 

uses statistical methods to provide risk assessments and is 

the least subjective of the approaches. Proponents of each 

method have argued about the various advantages and 

disadvantages over many years [4-6] but current policy is to 

integrate them where possible.  

One of the actuarial methods (the category to which this 

paper belongs) uses an important technique from computer 

science: the multiple iterative classification tree (ICT) 

model, which is part of the MacArthur Violence Risk 

Assessment method [7]. This tool was developed to predict 

the risk of violence behaviour among recently discharged 

patients [7]. The results obtained from the ICT model had a 

high level of accuracy for the specific population group but 

the tool is resource and time intensive [8]. Another model 

uses tree mining [9] but a problem with all these approaches 

is the difficulty of obtaining clinical data that covers 

multiple risks and probabilities that can be generalised 

across populations.  

Although GRiST is a model based on structured clinical 

judgement, it collects comprehensive and precisely defined 

data for all risks that are automatically stored in a database 

and thus available for probabilistic analyses. The idea is to 

link its clinical judgements to actuarial analysis and create a 

risk tool that explicitly connects the two risk-assessment 

approaches. Furthermore, the hierarchical structuring of 

GRiST‟s knowledge base provides the potential for 
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informing the structure of corresponding probabilistic 

graphs, which have limited current use in the mental health 

domain. GRiST allows both causal and non-causal 

relationships to be modelled between the various risk factors 

(cues), which helps provide a more accurate domain 

representation. This paper explores how to exploit GRiST 

for creating a probabilistic graph model of risk assessment 

and thus link probabilistic analyses to its fuzzy-set 

modelling of clinical reasoning. See [10] and [11] for a 

review of some identified advantages for using graphical 

models in risk assessments. 

III. THE GALATEAN RISK SCREENING TOOL, GRIST 

GRiST is a decision support system for mental health risk 
assessments [12] and is based on a psychological model of 
classification known as the Galatean model [13]. The 
variables modelled in the GRiST structure and the 
relationships between them are represented by a hierarchical 
tree structure (see Figure 1) and uncertainty is processed 
using fuzzy-set membership grades (MGs). In the GRiST 
knowledge structure (GKS), there are two main types of 
nodes (variables), namely concept nodes and datum nodes. 
Datum nodes are leaf nodes in the tree and thus do not have 
children. They represent measureable input data such as a 
person‟s insight into behaviour (Figure 1). Concept nodes 
are made up of two or more component nodes, which could 
be datum nodes or other concept nodes (e.g. substance 
misuse in Figure 1)  

. 

 
 

Figure 1. Small subsection of the GRiST Knowledge structure with datum 
and concepts nodes represented as rectangles and ovals respectively and 
generic nodes by g and generic distinct nodes by gd. 

 
Both datum and concept nodes can be subcategorised 

into types that describe their locations and contextual 
behaviour in the GKS. Nodes that occur only once are called 
non-generic whereas those that have multiple occurrences 
are named generic. Some generic nodes are additionally 
distinguished as “generic distinct” because these have 
different uncertainty parameters for different locations in the 
tree whereas the plain generic nodes have exactly the same 
internal uncertainty representation wherever they occur.  

The full GKS was originally elicited from 46 domain 
experts and comprised of 3,026 nodes with 338 unique 
concept nodes and 692 unique datum nodes [12]. Subsequent 
knowledge validation reduced it considerably so that only 
about 220 datum nodes are identified for data collection. 

A. GRiST Data Structures and Uncertainty Processing 

In GRiST, uncertainty is encapsulated by MGs and 
relative influences (RIs). An MG represents the degree of 
membership of an object in a node of the tree, with each 
nodes‟s MG ultimately contributing to the top-level risk 
membership (e.g., suicide and self harm). The actual 
contribution depends on the node‟s RI, which weighs the 
node‟s influence compared to its siblings. For example, from 
Figure 1, insight into behaviour has three children with RIs 
of 0.2, 0.5, and 0.3, which filter their MG contributions to 
the parent node as shown.  

The MG distributions of the datum nodes were specified 
by clinical experts and enable patient cues to map to MGs 
that feed through the entire GRiST tree, from leaf nodes to 
the top-level risks. Equation 1 shows the formula used but 
see [13] for further details on the MG propagation process: 



Using Equation (1), the MG of each concept node is 
calculated by multiplying the MG of the datum node along 
each path p with all the RIs along that path and up each level 
l leading to the concept, and then summing the value 
obtained with all the corresponding values obtained along 
each path to the concept. An example of this is depicted on 
the left branch of the tree in Figure 1, to show how the MG is 
generated for the insight and responsibility concept. 

B. GRiST Knowledge Structure (GKS) Constraints and 

Independence Properties 

Having described the GKS and its data types, we now 
briefly outline the constraints incorporated in this knowledge 
structure and their correlation to various independence 
properties. A brief description is given below but see [14] for 
a more in-depth discussion. In this paper, we extend the work 
presented in the earlier paper [14] and expand on the 
constraint mapping and structure combination rules. 
Semantically there are three different types of relationships 
that can exist between any two nodes in the GKS, as follows:  

 

 IS-A relationships refer to a „kind-of‟ relationship, 
where the children nodes are a type of the parent 
node and are thus associated through their common 
parent. An example of this type of relationship is the 
parent node substance misuse and its children nodes 
alcohol misuse and drug misuse. 

 Contribute-to relationships refer to those where the 
children nodes „contribute to‟ and influence the 
parent node. For example the relationship type 
between the parent node constraints on suicidal 
behaviour and its internal nodes insight and 
responsibility and religious values/beliefs affecting 
suicide risk (see Figure 1) are of type contribute-to 

 
1 1

( ( ) )
LP

p lp

p l

MG X MG datum RI
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because the children nodes directly contribute to the 
value of the parent node. Of the three types of 
relationship, this is the only causal one. 

 Wrapper relationships occur when the parent node 
serves as a form of container for the children nodes 
(the parent „wraps‟ the variables together) rather than 
being a cohesive variable in its own right. In this 
type of relationship there is a correlation between the 
children and parent nodes but not one that can be 
assumed to be causal. For example the relationship 
types between the parent concept general current 
behaviour and its children nodes appropriateness of 
diet, challenging behaviour, daily activity, reckless 
risk taking, sleep disturbance, unintentional risk 
making and uncharacteristic recent change in 
behaviour  is of the type wrapper (it is partially 
depicted in Figure 1). 

 
For the purpose of mapping to the probability graphs, it is 
important to note that the is-a and wrapper relationship types 
map to non-causal links, whereas the contribute-to 
relationship type is causal. As a result of these semantic 
relations between the various node types in the GKS, it is 
possible to give a concise list of the various constraints that 
exist within the model. These constraints in turn aid in the 
formal definition of the set of component structures that the 
GKS can be decomposed into. These component structures 
are then mapped into probability graphs that will eventually 
form the building blocks for the resultant probability chain 
graph that will provide the model for inferring the final risk 
assessments.  

Detailed discussion of the GRiST component structures 
can be found in [14] but for clarity some of the constraints 
are outlined next. In the definitions, a root concept refers to 
the highest ancestor node in the structure under discussion. 
So, for example, if the entire diagram depicted in Figure 1 is 
taken to be one structure, then its root concept node is the 
suicide node. The constraints are for certain aspects of the 
structure that must hold wherever it is located in the GKS. 
 
Constraints Related to Generic Root node structures: 

 The RI value of the root node varies. 

 The MG value of the root node is fixed. 

 The RI values of the internal nodes are fixed. 

 Given that the MGs and RIs of all internal nodes are 
fixed then the point of reference (i.e. the context) for 
the internal nodes is their root node. 

 Generic root structures must be kept as cohesive 
wholes. It is possible to have a cohesive whole 
within another cohesive node i.e., root concept of 
type generic with internal nodes of type generic.  

 As every node within a root concept of type generic 
has a fixed RI and MG everywhere the root concept 
occurs, if one of the internal structures is of type 
generic distinct (defined later), it will also need to 
have fixed RIs and MGs values within the context of 
the root concept everywhere it occurs. This is not 

the default or usual behaviour of these nodes, as 
explained next, but is in fact a special case. 

 
Constraints Related to Generic Distinct Roots 

 The RI value of the root node varies. 

 The MG value of the root node varies. 

 The RI values of the internal nodes vary. 

 If a generic distinct node has at least one node of 
generic type as an ancestor then the context (or point 
of reference) for the generic distinct node is the 
nearest ancestor of type generic. Otherwise, the 
context for the generic distinct node is its 
neighbouring nodes. 

 In the case where all the internal nodes of a generic 
distinct root concept are of type generic, if all the 
MGs and RIs of these internal nodes are always 
fixed it is obvious that the root concept MG value 
cannot vary and will itself always be fixed too, 
which is incorrect behaviour for a generic distinct 
root concept. This therefore leads to the constraint 
that a root concept of type generic distinct cannot 
have all its internal nodes to be of type generic. To 
make it possible for the variation in the root 
concept‟s MG value in various locations, there must 
be at least one internal node of type generic distinct. 
This is seen to be true in the GKS and is a good test 
of the validity for generic distinct node definitions. 

 
From these constraints we obtain two structures that the GKS 
can be broken down into and for which probabilistic 
equivalents can be acquired. 
 
1. For the generic root node that always has the same 
uncertainty values regardless of its location in the GKS, the 
context (i.e., point of reference) for all contained nodes is its 
own root concept. Within (and only within) the root concept 
the uncertainty values of the internal nodes are fixed and 
always remain the same regardless of location.  

The name given to this type of structure is the fixed 
generic component structure (FG). An example from 
Figure 1 is the generic root node insight and responsibility 
and its internal nodes.  

 
2. The generic distinct structures have varying internal RIs 
and varying root concept MG. The context for these nodes 
are the neighbouring nodes where the neighbouring nodes 
refer to the root concept, all its internal nodes (descendents), 
the root concept siblings and the root concept parents (as the 
root concept MG varies). It is also dependent on the top risk 
in which it occurs (e.g., suicide, self harm and so on). This 
type of structure has been named the generic distinct 
component structure (GD). This structure has no generic 
ancestor or, more to the point, if it did, it behaves as an FG 
node and can be ignored as a GD concept.  

Both the FG and GD structures are composite wholes that 
can contain other composite variables within them. An 
example of this is seen in Figure 1 where the GD structure 
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with root concept node current behaviour contains within it 
the FG structure with root node appropriateness of diet. 

The next section explores the relationship between these 
component structures and the independence properties they 
represent and maps them to different probability graphs, 
which will serve as building blocks for the final probability 
chain graph. 

IV. THE BUILDING BLOCK PROBABILITY GRAPHS  

In this section we develop the building blocks by 

examining the independence properties of each of the 

component structures discussed in Section III. 

A. Mapping the Fixed Generic Structure 

As mentioned earlier, because in a FG structure the 
relevant context for the determination of the uncertainty 
values is the root concept node of the FG structure itself, the 
independence property of the FG structure is as follows; 

The nodes in a FG structure (i.e., its root node and all its 
internal structures) are conditionally independent of all 
other nodes in the GKS.  
The above can be modelled by a Markov Random Field 
(MRF) [15]. The local Markov property for a MRF structure 
(the property outlining its independence status) states that a 
variable is conditionally independent of all other variables 
given its neighbours [15]. This directly correlates to the 
independence property of a FG structure, if we replace the 
variable in the MRF with the FG structure and in a similar 
manner also define the neighbours to be the FG root concept 
and all its descendents. An example FG structure from 
Figure 1 is the insight and responsibility root concept and its 
internal nodes insight into behaviour, need for help with 
difficulties and responsibility into impact of behaviour on 
others. 

We, however, also need to consider the different 
relationship types (i.e., is-a, wrapper and contribute-to) 
between the nodes. Normally the contribute-to type should 
be represented by a directed edge, because the relationship is 
causal, and both the is-a and wrapper types are represented 
with non-directed edges as there is no implied causality.  

 

 
 

Figure 2. Directed and Undirected Graphs 

 
However, the two diagrams in Figure 2 represent two 

different independence relations (see [16] for more on 
independence relations between the different graph types) 
but for FG structures these are not relevant within the MRF 
equivalent. Hence the relationships are all represented as 
undirected edges even when the relationship type between 
nodes is of type contribute-to (i.e., causal). 

B. Mapping the Generic Distinct Structure 

The GD structure is highly context sensitive and as such 
its independence properties are dependent on the identified 
relationship types between the various nodes in the structure. 
There are four possible relationship structures that can be 
obtained from the GD, namely: the non-causal to non-causal; 
the non-causal to causal; the casual to non-causal; and finally 
the causal to causal hierarchical relationship links. Recall 
that is-a and wrapper relationships are non-causal and the 
contribute-to relationship type is causal.  

The independence properties of both the causal to non-
causal and the non-causal to causal map to causally linked 
MRFs, which are in effect chain graphs (these will be 
discussed in more detail in the next section). The non-causal 
to non-causal on the other hand map to an undirected graph 
(MRF). For cases where this mapping is hierarchical, tree 
structured MRFs (TS-MRFs) [17] allow us to model such 
cases. And finally, the causal to causal links map to directed 
graphs (Bayesian Belief Networks) [18]. 
 

C. Summary of Building Block Probability Approach 

To summarise the building block probability approach, a 

two step method is used. Initially each identified component 

structure (i.e., FG or GD) is represented in the overall 

graphical model as a composite variable. This results in an 

embedded model where each node itself represents a 

graphical model. The second layer, is then reached when we 

model and consider an individual sub-tree. For the FG 

structures we map the nodes to MRFs or their variants (as 

discussed earlier). The uncertainty contribution from each 

node (i.e., embedded graphical model) is then plugged into 

the overall graph. See [19] and [20] for other work 

involving different aspects of embedded graphs and mixture 

trees. 

V. COMPOSITE PROBABILITY CHAIN GRAPH 

Chain graphs are graphical models, which allow both 
directed and undirected graphs with the constraint that they 
do not have semi-directed cycles [21]. Linking two variables 
in a chain graph with a directed edge implies that the 
relationship between them is causal, and the direction of the 
edge is from cause to effect. On the other hand variables that 
are linked with an undirected edge do not have a causal 
relationship but however have an associative relationship (in 
a similar manner to MRFs). As a result of the inherent causal 
and associative relationships contained within the GKS, 
which are also clearly seen in the mapping to the building 
block probability graphs (discussed in Section IV), it makes 
logical sense to model this knowledge structure using a 
probability chain graph. More in-depth discussions on the 
chain graph can be seen in [22] 

A. Development of the GRiST Chain Graph 

The GRiST chain graph was developed from the building 
block probability graphs using a step by step combination of 
the graphs. The combining of multiple probabilistic graphical 
models requires care and one of the important considerations 
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is to ensure that the independence properties represented in 
the different models being combined is maintained in the 
composite graphs (see [23] for a discussion on a framework 
for probabilistic graphical model combination).   

B. Maintaining the Integrity of the Independence 

Properties 

To ensure that the composite structure we have 

developed correctly models both a chain graph and a chain 

graph with the correct independence properties, some 

conditions have to be fulfilled. 

 During the combination process, cycles and semi 
cycles must be avoided (to circumvent violating the 
chain graph constraint). This condition can be 
fulfilled because as a direct result of the GKS 
constraints and the GRiST hierarchical form, the 
graphical building blocks that are to be combined do 
not contain any cycles or semi-cycles. As such the 
only way that cycles can be introduced into the 
combined structure is if the components are 
combined in an opposite direction to the uncertainty 
propagation, which would not make logical sense.  

 Secondly a chain graph needs to map into 
subsections (or blocks), with variables within a 
subset being linked via undirected edges and 
variables between blocks being linked via directed 
edges. Again this is possible because of the 
hierarchical form of the GRiST structure (and hence 
the building blocks‟ probability structures). The 
different levels in these knowledge structures map 
directly to the notion of subsets in chain graphs. 

In addition to the above, to ensure that the integrity of the 
independence properties are maintained throughout the 
development process, the possible combination options 
between the various graphical building block graphs and 
their combination rules must be clearly defined, as described 
next. 

 
Combining two FG Structures 
Any two structures that need to be combined must be 
directly linked in the GKS and one of the two FG root nodes 
will be an ancestor to the other. Semantically this means that 
given the ancestor root concept and all the other nodes 
comprising the two FG structures (including the other FG 
root concept, which in effect is seen as an internal node to 
the ancestor root concept) the combined MRF structure (i.e., 
from both FG structures) is independent of all other nodes in 
the model. Therefore regardless of the relationship types 
between the nodes in these two structures, they should be 
linked using an undirected edge to obtain an MRF or TS-
MRF (depending on the type of FGs combined). For the FG 
and FG structure combinations, if the combination rule does 
not override the relationship types between nodes in some 
instances, a directed graph might be used to combine two 
FGs and this will completely change the independencies 
represented in the GKS. Figure 3 depicts an example of the 
change in conditional independencies caused by the use of 
the wrong link type. 
 

 
Figure 3. Change in conditional independence as a result of wrong link 

 
In Figure 3, the combination of structures FG 1 and FG 2 
results in a composite FG structure that is independent of all 
other nodes in the model. However, in the second structure 
(right hand diagram) as a result of the arrow used to link FG 
structures FG 3 and FG 4, a set of nodes are obtained within 
the composite combined FG that are conditionally 
independent of each other given their prior and concurrent 
nodes. 

 
Combining a FG Structure and GD Structure 
Semantically, when a FG structure is linked to a GD 
structure, from the definition of the FG structure, we see that 
it remains independent of the GD structure (recall that the 
composite FG structure is independent of all other nodes in 
the model). The GD structure on the other hand is dependent 
on its neighbours and thus will not be independent of the FG 
structure. The challenge here is defining the link in such a 
way that the GD dependence relations with the FG structure 
remain consistent. In this case the order of the combination is 
important. Where the FG structure is an ancestor to the GD 
structure, if an undirected link type is used to combine these 
two structures, the composite structure will be a FG structure 
(see Figure 4).  
 

 
Figure 4. Combination of FG and GD structures resulting in a composite FG 
structure. 
 

However where the GD structure is the ancestor structure, 
the relationship type between the two structures is needed to 
determine the link type. It is a directed link for the 
contribute-to relationship and undirected links for all other 
relationship types.  

C. Summary of GRiST Chain Graph Development Steps 

The following summarises the translation process from the 
GKS to the final composite GRiST chain graph. 
 
Step 1: Partition the GKS into graphical building blocks 
(i.e., FG or GD). 
 Step 2: For each type of structure, identify the relationship 
types that exist between the various nodes (i.e., is-a, wrapper 
or contribute-to).   
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Step 3: Next identify the graphical building blocks that 
each component structure maps to, based on its 
independence properties. 
Step 4: Repeat the above for the entire structure, until you 
are left with just graphical building blocks needing 
combination. 
Step 5: Identify the type of combination to be carried out.  
Step 6: Apply the relevant combination rules.  
Step 7: The resultant chain graph should contain a mixture 
of explanatory, intermediate and response variables, and also 
maintain the independence properties of the original GKS. 

VI. CONCLUSION AND FUTURE WORK 

The development of a probability chain graph for mental 
health risk assessment has been presented in this paper. We 
have shown how the knowledge encapsulated in the 
psychological fuzzy-set based GRiST model can be mapped 
into initial component structures based on the inherent 
constraints in the model and how these in turn can be 
mapped to building block probability structures that can be 
eventually moulded together to construct a chain graph for 
mental health risk assessments.  

The present solution is ongoing and future work will 
focus on using data collected by the tool in clinical use to 
validate the chain graph structure and learn its parameter 
settings. Examination of the dependencies between variables 
and their ontological definitions within GRiST will help 
determine whether the structural relationships are correct. 
Parameter estimation will then take place in two stages: 
estimating the potential functions for related cues in the 
MRF structures followed by estimating the conditional 
probability distributions for the nodes in the directed 
segments of the chain graph.  Finally the identification of the 
most effective and efficient inference algorithms for the 
developed structure will be carried out. The methods 
discussed in this paper could be applicable to other systems 
based on hierarchical expertise, especially ones that contain 
both causal and non-causal relations. 
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