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This study suggests a new approach to EEGdata classification by exploring the idea of using evolutionary computation to both select
useful discriminative EEG features and optimise the topology of Artificial Neural Networks. An evolutionary algorithm is applied
to select the most informative features from an initial set of 2550 EEG statistical features. Optimisation of a Multilayer Perceptron
(MLP) is performed with an evolutionary approach before classification to estimate the best hyperparameters of the network.
Deep learning and tuning with Long Short-Term Memory (LSTM) are also explored, and Adaptive Boosting of the two types of
models is tested for each problem. Three experiments are provided for comparison using different classifiers: one for attention
state classification, one for emotional sentiment classification, and a third experiment in which the goal is to guess the number a
subject is thinking of. The obtained results show that an Adaptive Boosted LSTM can achieve an accuracy of 84.44%, 97.06%, and
9.94% on the attentional, emotional, and number datasets, respectively. An evolutionary-optimised MLP achieves results close to
the Adaptive Boosted LSTM for the two first experiments and significantly higher for the number-guessing experiment with an
Adaptive Boosted DEvo MLP reaching 31.35%, while being significantly quicker to train and classify. In particular, the accuracy
of the nonboosted DEvo MLP was of 79.81%, 96.11%, and 27.07% in the same benchmarks. Two datasets for the experiments were
gathered using aMuse EEG headband with four electrodes corresponding to TP9, AF7, AF8, and TP10 locations of the international
EEG placement standard. The EEGMindBigData digits dataset was gathered from the TP9, FP1, FP2, and TP10 locations.

1. Introduction

Bioinspired algorithms have been extensively used as robust
and efficient optimisation methods. Despite the fact that
they have been criticised for being computationally expen-
sive, they have also been proven useful to solve complex
optimisation problems. With the increasing availability of
computing resources, bioinspired algorithms are growing in
popularity due to their effectiveness at optimising complex
problem solutions. Scientific studies of natural optimisation
from many generations past, such as Darwinian evolution,
are now becoming viable inspiration for solving real-world
problems.

This increasing resource availability is also allowing for
more complex computing in applications such as Internet of
Things (IoT), Human-Robot Interaction (HRI), and human-
computer interaction (HCI), providing more degrees of both

control and interaction to the user. One of these degrees of
control is the source of all others, the human brain, and it can
be observed using electroencephalography. At its beginning
EEG was an invasive and uncomfortable method, but with
the introduction of dry, commercial electrodes, EEG is now
fully accessible even outside of laboratory setups.

It has been noted that a large challenge in brain-machine
interaction is inferring the attentional and emotional states
from particular patterns and behaviours of electrical brain
activity. Large amounts of data are needed to be acquired
from EEG, since the signals are complex, nonlinear, and
nonstationary. To generate discriminative features to describe
a wave requires the statistical analysis of time window inter-
vals.This study focuses on bringing together previous related
research and improving the state-of-the-art with a Deep
Evolutionary (DEvo) approach when optimising bioinspired
classifiers. The application of this study allows for a whole
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bioinspired and optimised approach for mental attention
classification and emotional state classification and to guess
the number in which a subject thinks of.These states can then
be taken forward as states of control in, for example, human-
robot interaction.

In addition to the experimental results, the contributions
of the work presented in this paper are as follows:

(i) An effective framework for classification of complex
signals (brainwave data) through processes of evolu-
tionary optimisation and bioinspired classification.

(ii) A new evolutionary approach to hyperheuristic bioin-
spired classifiers to prevent convergence on local
minima found in the EEG feature space.

(iii) To gain close to identical accuracies, and in one
case exceeding them, with resource-intensive deep
learning through the optimised processes found in
nature.

The remainder of this article proceeds as follows: Sec-
tion 2 provides an exploration of the state-of-the-art works
related to this study, briefly introducing the most relevant
concepts applied into theDEvo approach tomachine learning
with electroencephalographic data. Section 3 describes the
methods used to perform the experiments performed. The
results of the experiments, including graphical representa-
tions of results and discussion of implications, are presented
in Section 4. Section 5 details the conclusions extracted from
the experiments and the suggested future work.

2. Background

2.1. Electroencephalography and Machine Learning with EEG.
Electroencephalography, or EEG, is the measurement and
recording of electrical activity produced by the brain [4].
The collection of EEG data is carried out through the use
of applied electrodes, which readminute electrophysiological
currents produced by the brain due to nervous oscillation
[5, 6].Themost invasive form of EEG is subdural [7] in which
electrodes are placed directly on the brain itself. Far less
invasive techniques require electrodes to be placed around
the cranium, of which the disadvantage is that signals are
being read through the thick bone of the skull [8]. Raw
electrical data is measured in microVolts (uV), which over
time produce wave patterns.

Lövheim’s 2012 study produced a new three-dimensional
way of graphically representing human emotion in terms of
categories and hormone levels [9]. This graphical represen-
tation can be seen in Figure 1, with exposition of emotional
categories found in Table 1. Each vertex of the cube represents
a centroid of an emotional category. It is worth noting that
categories are not completely concrete, and that emotions
are experienced in gradient, as well as overlapping between
categories [10]. It is this chemical composition that causes
certain nervous oscillation and thus electrical brainwave
activity [11]. Thus, the brainwave activity can be used as data
to estimate human emotions.

The Muse headband is a commercially available EEG
recording device with four electrodes placed on the TP9,
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Figure 1: Lövheim’s cube: mapping levels of noradrenaline,
dopamine, and serotonin to human emotion.
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Figure 2: EEG sensors TP9, AF7, AF8, and TP10 of the Muse
headband on the international standard EEG placement system [1].

AF7, AF8, and TP10 positions based on the international EEG
placement system [1]. These can be seen in Figure 2. Because
the signals are quite weak in nature, signal noise is a major
issue due to it effectively masking the useful information
[12]. The EEG headband employs various artefact separation
techniques to best retain the brainwave data and discard
unwanted noise [13]. Previously, the headband has been used
along with machine learning techniques to measure different
levels of user enjoyment, treating it as a gradient much like in
sentiment analysis projects, researchers successfullymanaged
to measure different levels of a user’s enjoyment [14, 15]
while playing mobile phone games. Muse headbands are also
often used in neuroscience research projects due to their
low-cost and ease of deployment (since they are a consumer
product), as well as its effectiveness in terms of classification
and accuracy [16]. In this experiment, binary classification
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of two physical tasks achieved 95% accuracy using Bayesian
probability methods.

Previous work with the Muse headband used classical
and ensemble machine learning techniques to accurately
classify both mental [17] and emotional [3] states based on
datasets generated by statistical extraction.The application of
statistical extraction as a form of data preprocessing is useful
across many platforms, e.g., for semantic place recognition
in human-robot interaction [18, 19]. Machine learning tech-
niques with inputs being that of statistical features of the wave
are commonly used to classifymental states [20, 21] for brain-
machine interaction, where states are used as dimensions
of user input. Probabilistic methods such as Deep Belief
Networks, Support Vector Machines, and various types of
neural network have been found to experience varying levels
of success in emotional state classification, particularly in
binary classification [22].

EEG brainwave data classification is a contemporary
focus in the medical fields; abnormalities in brainwave
activity have been successfully classified as those leading to
a stroke using a Random Forest classification method [23].
In addition to the detection of a stroke, researchers also
found that monitoring classified brain activity aided suc-
cessfully with rehabilitation of motor functions after stroke
when coupled with human-robot interaction [24]. Brainwave
classification has also been very successful in the preemptive
detection of epileptic seizures in both adults and newborn
infants [25, 26].The classification ofminute parts of the sleep-
wake cycle is also a focus of medical researchers in terms
of EEG data mining. Low resolution, three-state (awake,
sleep, and REM sleep) EEG data was classified with Bayesian
methods to a high accuracy of 92-97% in both humans
and rats using identical models [27], both showing the ease
of classification of these states as well as the cross-domain
application between human and rat brains. Random Forest
classification of an extracted set of statistical EEG attributes
could classify sleeping patterns with higher resolution than
that of the previous study at around 82% accuracy [28].
It is worth noting that for a real-time averaging technique
(prediction of a time series of, for example, every 1 second),
only majority classification accuracies at >50% would be
required, though the time series could be trusted at shorter
lengths with better results from the model.

Immune Clonal Algorithm, or ICA, has been suggested
as a promising method for EEG brainwave feature extrac-
tion through the generation of mathematical temporal wave
descriptors [29].This approach found success in classification
of epileptic brain activity through generated features as
inputs to Naive Bayes, Support Vector Machine, K-Nearest
Neighbours, and Linear Discriminant Analysis classifiers.

Autonomous classification through affective computing
in human-machine interaction is a very contemporary area
of research due to the increasing amounts of computa-
tional resources available, including, but not limited to,
facial expression recognition [30], Sentiment Analysis [31],
human activity recognition [32, 33], and human behaviour
recognition [34, 35]. In terms of social human-machine
interaction, a Long Short-Term Memory network was found
to be extremely useful in user text analysis to derive an

Table 1: Exposition of emotional categories of Figure 1.

Emotion Category Emotion

A Shame
Humiliation

B Contempt
Disgust

C Fear
Terror

D Enjoyment
Joy

E Distress
Anguish

F Surprise

G Anger
Rage

H Interest
Excitement

affective sentiment based on negative and positive polarities
[36] and was used in the application of a chatbot.

2.2. Evolutionary Algorithms. An evolutionary algorithmwill
search a problem space inspired by the natural process of
Darwinian evolution [37]. Solutions are treated as living
organisms that, as a population, will produce more offspring
that can survive. Where each solution has a measurable
fitness, a survival of the fittest will occur, causing the weaker
solutions to be killed off and allowing for the stronger to
survive [38].The evolutionary search in its simplest form will
follow this process:

(1) Create an initial random population solution
(2) Simulate the following until termination occurs:

(a) Using a chosen method, select parent(s) for use
in generating offspring(s)

(b) Evaluate the offspring’s fitness
(c) Consider the whole population, and kill off the

weakest members

The aforementioned algorithm is often used to decide on
network parameters [39] since there is “no free lunch” [40]
when it comes to certain types of optimisation problems.
In particular, it has been demonstrated that the problem of
searching for the optimal parameters for a neural network
cannot be solved in polynomial time [41].

2.3. Multilayer Perceptron. A Multilayer Perceptron is a type
of Artificial Neural Network (ANN) that can be used as a
universal function approximator and classifier. It computes
a number of inputs through a series of layers of neurons,
finally outputting a prediction of class or real value.More than
one hidden layer forms a deep neural network. Output nodes
are the classes used for classification with a softmax (single)
choice, or, if there is just one a regression output (e.g., stock
price prediction in GBP).
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Learning is performed for a defined time measured in
epochs and follows the process of backpropagation [42].
Backpropagation is a case of automatic differentiation in
which errors in classification or regression (when comparing
outputs of a network to ground truths) are passed backwards
from the final layer, to derive a gradient which is then used
to calculate neuron weights within the network, dictating
their activation. That is, a gradient descent optimisation
algorithm is employed for the calculation of neuron weights
by computing the gradient of the loss function (error rate).
After learning, a more optimal neural network is generated
which is employed as a function to best map inputs to outputs
or attributes to class.

The process of weight refinement for the set training time
is given as follows:

(1) Generate the structure of the network based on input
nodes, defined hidden layers, and required outputs.

(2) Initialise all of the node weights randomly.
(3) Pass the inputs through the network and generate

predictions as well as cost (errors).
(4) Compute gradients.
(5) Backpropagate errors and adjust neuron weights.

Errors can be calculated in numerous ways, e.g., distance in
Euclidean or non-Euclidean space for regression. In classi-
fication problems, entropy is often used, that is, the level of
randomness or predictability for the classification of a set:

𝐸 (𝑠) = −∑
𝑗

𝑝𝑗 × log (𝑝𝑗) (1)

Comparing the difference of two measurements of entropy
(two models) gives the information gain (relative entropy).
This is the value of the Kullback-Leibler (KL) divergence
when a univariate probability distribution of a given attribute
is compared to another [43].The calculation with the entropy
algorithm in mind is thus simply given as𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛 (𝑇, 𝑎) = 𝐻 (𝑇) − 𝐻 (𝑇 | 𝑎) (2)

A positive information gain denotes a lower error rate and
thus a better model, i.e., a more improved matrix of network
weights.

Denser is a related novel method of evolutionary opti-
misation of an MLP [44]. Whereas this study focuses on
the search space of layer structure within fully connected
neural networks, Denser also considers the type of layer.
This increase of parameters to optimise grows the search
space massively and is a very computationally intensive algo-
rithm, which achieves very high results. Benchmarked is an
impressive result of 93.29 on the CIFAR-10 image recognition
dataset. EvoDeep [45] is a similar approach focusing on
deep neural networks with varying layers; researchers found
Roulette Selection (random) to be the best for selecting two
parents for offspring, and thus such selection was chosen
for this study’s evolutionary search. A method of “Extreme
Learning Machines” was proposed for the optimisation of
deep learning processes and was extended to also perform
feature extraction within the topological layers of the model
[46].
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Figure 3: Diagram of a standard block within a Long Short-Term
Memory network [2].

2.4. Long Short-Term Memory. Long Short-Term Memory
(LSTM) is a form of Artificial Neural Network in which
multiple Recurrent Neural Networks (RNN) will predict
based on state and previous states. As seen in Figure 3, the
data structure of a neuron within a layer is an “LSTM Block”.
The general idea is as follows.

2.4.1. Forget Gate. The forget gate will decide on which
information to store and which to delete or “forget”:

𝑓𝑡 = 𝜎 (𝑊𝑓. [ℎ𝑡=1, 𝑥𝑡 + 𝑏𝑓) , (3)

where t is the current timestep,Wf is the matrix of weights, h
is the previous output (t-1), xt is the batch of inputs as a single
vector, and finally bf is an applied bias.

2.4.2. Data Storage and Hidden State. After deciding which
information to forget, the unit must also decide which
information to remember. In terms of a cell input i, Ct is a
vector of new values generated.

𝑜𝑡 = 𝜎 (𝑊𝑖. [ℎ𝑡=1, 𝑥𝑡 + 𝑏𝑖) , (4)

𝐶𝑡 = tanh (𝑊𝑐. [ℎ𝑡=1, 𝑥𝑡 + 𝑏𝑐) . (5)

Using the calculated variables in the previous operations,
the unit will follow a convolutional operation to update
parameters:

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡. (6)

2.4.3. Output. In the final step, the unit will produce an
output at output gate Ot after the other operations are
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Figure 4: A graphical representation of the Deep Evolutionary (DEvo) approach to complex signal classification. An evolutionary algorithm
simulation selects a set of natural features before a similar approach is used, then this feature set becomes the input to optimise a bioinspired
classifier.

complete, and the hidden state of the node is updated:

𝑜𝑡 = 𝜎 (𝑊𝑜. [ℎ𝑡=1, 𝑥𝑡 + 𝑏𝑜) , (7)

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) . (8)

Due to the observed consideration of time sequences, i.e.,
previously seen data, it is often found that time dependent
data (waves; logical sequences) are very effectively classified
thanks to the addition of unit memory. LSTMs are particu-
larly powerful when dealingwith speech recognition [47] and
brainwave classification [48] due to their temporal nature.

2.5. Adaptive Boosting. Adaptive Boosting (AdaBoost) is an
algorithm which will create multiple unique instances of a
certain model to attempt to mitigate situations in which
selected parameters are less effective than others at a certain
time [49]. The models will combine their weighted predic-
tions after training on a random data subset to improve the
previous iterations. The fusion of models is given as

𝐹𝑇 (𝑥) = 𝑇∑
𝑡=1

𝑓𝑡 (𝑥) , (9)

where F is the set of classifiers and x is the data object being
considered [50].

3. Method

Building on top of previous works which have succeeded
using bioinspired classifiers for prediction of biological pro-
cesses, this work suggests a completely bioinspired process. It
includes biological inspiration into every step of the process
rather than just the classification stage.The system as a whole
therefore has the following stages:

(1) Generation of an initial dataset of biological data,
EGG signals in particular (collection).

(2) Selection of attributes via biologically inspired com-
puting (attribute selection).

(3) Optimisation of a neural network via biologically
inspired computing (hyperheuristics).

(4) Use of an optimised neural network for the classifica-
tion of the data (classification).

The steps allow for evolutionary optimisation of data
preprocessing as well as using a similar approach for deep
neural networks which also evolve. This leads to the Deep
Evolutionary orDEvo approach. A graphical representation of
the above steps can be seen in Figure 4. Nature is observed to
be close to optimal in both procedure and resources; the goal
of this process therefore is to best retain high accuracies of
complex models, but to reduce the processing time required
to execute them.

The rest of this section serves to give details to the steps
of the DEvo approach seen in Figure 4.

3.1. Data Acquisition. As previously mentioned, the
paper at hand provides three experiments dealing with
the classification of the attentional, emotional state,
and “thinking of” state of subjects. For the first two
sets of experiments, two datasets were acquired from
previous studies [3, 17]. The first dataset (mental state)
distinguishes three different states related to how focused the
subject is: relaxed, concentrative, or neutral (https://www
.kaggle.com/birdy654/eeg-brainwave-dataset-mental-state).
This data was recorded for three minutes, per state, per
person of the subject group. The subject group was made
up of two adult males and two adult females aged 22 ± 2.
The second dataset (emotional state) was based on whether
a person was feeling positive, neutral, or negative emotions
(https://www.kaggle.com/birdy654/eeg-brainwave-dataset-
feeling-emotions). Six minutes for each state were recorded
from two adults, 1 male and 1 female aged 21 ± 1 producing
a total of 36 minutes of brainwave activity data. The
experimental setup of the Muse headset being used to
gather data from the TP9, AF7, AF8, and TP10 extra-cranial
electrodes during a previous study [3] can be seen in Figure 5.
An example of the raw data retrieved from the headband can
be seen in Figure 6. Additionally, observations of the range

https://www.kaggle.com/birdy654/eeg-brainwave-dataset-mental-state
https://www.kaggle.com/birdy654/eeg-brainwave-dataset-mental-state
https://www.kaggle.com/birdy654/eeg-brainwave-dataset-feeling-emotions
https://www.kaggle.com/birdy654/eeg-brainwave-dataset-feeling-emotions
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Figure 5: A subject having their EEGbrainwave data recordedwhile
being exposed to a stimulus with an emotional valence [3].

of subjects for the two aforementioned datasets were made;
educational level was relatively high within the subjects, two
were PhD Students, oneMaster’s Student, and one with a BSc
degree, all from STEM fields. All subjects were in fine health,
both physical and mental. All subjects were from the United
Kingdom, three were from the West Midlands whereas one
was from Essex. All of the subjects volunteered to take part
in this study.

The two mental state datasets are a constant work in
progress in order to become representative of a whole human
population rather than those described in this section, the
data as-is provides a preliminary point of testing and a proof
of concept of the DEvo approach to bioinspired classifier
optimisation, and this would be an ongoing process if
subject diversity has a noticeable impact, since the global
demographic often changes.

For the third experiment, the “MindBigData” dataset
was acquired and processed (http://www.mindbigdata.com/
opendb/). This publicly available data is an extremely large
dataset gathered over the course of two years from one
subject in which the subject was asked to think of a digit
between and including 0 to 9 for two seconds. This gives a
ten class problem. Due to the massive size of the dataset and
computational resources available, 15 experiments for each
class were extracted randomly, giving a uniform extraction
of 30 seconds per digit class and therefore 300 seconds
of EEG brainwave data. It must be critically noted that a
machine learning model would be classifying this single
subject’s brainwaves, and in conjecture, transfer learning is
likely impossible. Future work should concern the gathering
of similar data but from a range of subjects.TheMindBigData
dataset used a slightly older version of the Muse headband,
corresponding to two slightly different yet still frontal lobe
sensors, collecting data from the TP9, FP1, FP2, and TP10
electrode locations.

3.2. Full Set of Features (Preselection). As described previ-
ously, feature extraction is based on previous research into
effective statistical attributes of EEG brainwave data [17].
This section describes the reasoning behind the necessity of
performing statistical extraction, as well as the method to
perform the process.

The EEG sensor used for the experiments, the Muse
headband, communicates with the computer using Bluetooth
Low energy (BLE). The use of this protocol improves the
autonomy of the sensor at the expense of a nonuniform
sampling rate.Thefirst step applied to normalise the dataset is
using a Fourier-based method to resample the data to a fixed
frequency of 200Hz.

Brainwave data is nonlinear and nonstationary in nature,
and thus single values are not indicative of class. That is,
mental classification is based on the temporal nature of the
wave, and not the values specifically. For example, a simplified
concentrative and relaxed wave can be visually recognised
due to the fact that wavelengths of concentrative mental state
class data are far shorter, and yet, a value measured at any one
point might be equal for the two states (i.e., 𝑥 microVolts).
Additionally, the detection of the natures that dictate alpha,
beta, theta, delta, and gamma waves also requires analysis
over time. It is for these reasons that temporal statistical
extraction is performed. For temporal statistical extraction,
sliding time windows of total length 1s are considered, with
an overlap of 0.5 seconds. That is, windows run from [0𝑠 −1𝑠), [1.5𝑠 − 2.5𝑠), [2𝑠 − 3𝑠), [2.5𝑠 − 3𝑠), continuing until the
experiment ends.

The remainder of this subsection describes the different
statistical features types which are included in the initial
dataset:

(i) A set of values of signals within a sequence of
temporal windows 𝑥1, 𝑥2, 𝑥3 ⋅ ⋅ ⋅ 𝑥𝑛 are considered and
mean values are computed:

𝜇 1𝑁
𝑖∑
𝑁

𝑥𝑖. (10)

(ii) The standard deviation of values is recorded:

𝜎 = √ 1𝑁
𝑖∑
𝑁

(𝑥𝑖 − 𝜇)2. (11)

(iii) Asymmetry and peakedness of waves are statistically
represented by the skewness and kurtosis via the
statistical moments of the third and fourth order.
Skewness:

𝑦 = 𝜇𝑘𝜎𝑘 (12)

and kurtosis:

𝜇𝑘 = 1𝑁
𝑖∑
𝑁

(𝑥𝑖 − 𝜇)𝑘 (13)

http://www.mindbigdata.com/opendb/
http://www.mindbigdata.com/opendb/
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Figure 6: An example of a raw EEG data stream from the Muse EEG headband. The Y-axis represents measured brainwave activity in
microVolts (mV) and the X-axis is the time at which the data was recorded.

are taken where k=3rd and k=4th moment about the
mean.

(iv) Max value within each particular time window{𝑚𝑎𝑥1, 𝑚𝑎𝑥2, . . . , 𝑚𝑎𝑥𝑛}.
(v) Minimum value within each particular time window{𝑚𝑖𝑛1, 𝑚𝑖𝑛2, . . . , 𝑚𝑖𝑛𝑛}.
(vi) Derivatives of the minimum andmaximum values by

dividing the time window in half, and measuring the
values from either half of the window.

(vii) Performing the min and max derivatives a second
time on the presplit window, resulting in the deriva-
tives of every 0.25s time window.

(viii) For every min, max, and mean value of the four 0.25s
time windows, the Euclidean distance between them
ismeasured. For example, themaximumvalue of time
window one of four has its 1D Euclidean distance
measured between it andmax values of windows two,
three, and four of four.

(ix) From the 150 features generated from quarter-second
min, max, and mean derivatives, the last six features
are ignored and thus a 12x12 (144) feature matrix
can be generated. Using the Logarithmic Covariance
matrixmodel [51], a log-cov vector and thus statistical
features can be generated for the data as such

𝑙𝑐𝑀 = 𝑈 (log𝑚(cov (𝑀))) . (14)

U returns the upper triangular features of the resul-
tant vector and the covariance matrix (cov(M)) is

cov (𝑀) = cov𝑖𝑗 = 1𝑁∑𝑘𝑁 (𝑥𝑖𝑘 − 𝜇𝑖) (𝑥𝑘𝑗 − 𝜇𝑗) . (15)

(x) For each full 1s time window, the Shannon Entropy is
measured and considered as a statistical feature:

ℎ = −∑
𝑗

𝑆𝑗 × log (𝑆𝑗) . (16)

The complexity of the data is summed up as such,
where h is the statistical feature and S relates to each
signal within the time window after normalisation of
values.

(xi) For each 0.5s time window, the log-energy entropy is
measured as

log 𝑒 = ∑
𝑖

log (𝑆2𝑖 ) +∑
𝑗

log (𝑆2𝑖 ) , (17)

where i is the first time window n to n+0.5 and j is the
second time window n+0.5 to n+1.

(xii) Analysis of a spectrum is performed by an algorithm
to performFast Fourier Transform (FFT) [52] of every
recorded time window, derived as follows:

𝑋𝑘 = 𝑁−1∑
𝑛=0

𝑆𝑡𝑛𝑒−𝑖2𝜋𝑘(𝑛/𝑁), 𝑘 = 0, . . . , 𝑁 − 1. (18)

The above statistical features are used to represent the
waves. With these features considered for each electrode
and time window (including those formed by overlaps), this
produces a total of 2147 scalars per measure. The resulting
number of features is too large to be used in real time (i.e.,
it would be computationally intensive) and would not yield
good classification results because of the large dimensionality.
Attribute selection is therefore performed to overcome this
limitations and, additionally, make the train process signifi-
cantly faster.

3.3. Evolutionary Optimisation and Machine Learning. The
evolutionary optimisation process as detailed previously was
applied when selecting discriminative attributes from the full
dataset for more optimised classification. An initial popu-
lation of 20 attribute subsets were generated and simulated
for 20 generations with tournament breeding selection [53].
Evolutionary optimisation was also applied to explore the n-
dimensional MLP topological search space, where n is the
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number of hidden layers, with the goal of searching for the
best accuracy (fitness metric). With the selected attributes
forming the new dataset to be used in experiments, two
models were generated: an LSTM and an MLP.

Before finalising the LSTM model, various hyperparam-
eters are explored, specifically the topology of the network.
This was performed manually since evolutionary optimisa-
tion of LSTM topology would have been extremely computa-
tionally expensive.More than one hidden layer often returned
worse results duringmanual exploration and thus one hidden
layer was decided upon. LSTM units within this layer would
be tested from 25 to 125 at steps of 25 units. Using a vector
of the time sequence statistical data as an input in batches of
50 data points, an LSTMwas trained for 50 epochs to predict
class for each number of units on a layer, and thus a manually
optimised topology was derived.

A Multilayer Perceptron was first fine-tuned via an
evolutionary algorithm [39] with the number of neurons and
layers as population solutions, with classification accuracy
as a fitness. A maximum of three hidden layers and up to
100 neurons per layer were implemented into the simulation.
Using 10-fold cross validation, the MLP had the following
parameters manually set:

(i) 500-epoch training time
(ii) Learning rate of 0.3
(iii) Momentum of 0.2
(iv) No decay
Finally, the two models were attemptedly boosted using

the AdaBoost algorithm in an effort to mitigate both the ill-
effects of manually optimising the LSTM topology as well as
fine-tune the models overall.

4. Results and Discussion

4.1. Evolutionary Attribute Selection. An evolutionary search
within the 2550 dimensions of the datasets was executed for
20 generations and a population of 20. For mental state, the
algorithm selected 99 attributes, whereas for the emotional
state, the algorithm selected a far greater 500 attributes for
the optimised dataset. This suggests that emotional state has
far more useful statistical attributes for classification whereas
mental state requires approx. 80% fewer. The MindBigData
EEG problem set, incomparable due to the previous due to
its larger range of classes, had 40 attributes selected by the
algorithm.This can be seen in Table 2.

The evolutionary search considered the information gain
(Kullback-Leibler Divergence) of the attributes and thus
their classification ability as a fitness metric, i.e., where a
higher information gain represents a more effective and less
entropic a model when such attributes are considered as
input parameters.The search selected large datasets, between
sizes 40 for the MBD dataset, to the 500 selected for the
emotional state dataset. Though too numerous to detail the
whole process (all datasets are available freely online for full
recreation of experiments), observations were as follows:

(i) For the mental state dataset, 99 attributes were
selected; the highest was the entropy of the TP9

electrode within the first sliding window at an IG
of 1.225. This was followed secondly with the eigen-
value of the same electrode, showing that the TP9
placement is a good indicator for concentrative states.
It must be noted that these values may possibly
correlate with the Sternocleidomastoid Muscle’s con-
tractional behaviours during stress and ergo the stress
encountered during concentration or the lack thereof
during relaxation, and thus EMG behaviours may be
inadvertently classified rather than EEG.

(ii) Secondly, for the emotional state dataset, the most
important attribute was observed to be the mean
value of the AF7 electrode in the second overlap-
ping time window. This gave an information gain of
1.06, closely followed by a measure of 1.05 for the
first covariance matrix of the first sliding window.
Minimum, mean, and covariance matrix values of
electrodes all followed with IG scores from 0.98 to
0.79 until standard deviation of electrodes followed.
Maximum values did not appear until the lower half
of the ranked data, in which the highest max value of
the second time window of the AF8 electrode had an
IG of 0.66.

(iii) Finally, for the MBD dataset, few attributes were
chosen. This was not due to their impressive ability,
but due to the lack thereof when other attributes were
observed. For example, the most effective attribute
was considered the covariance matrix of the second
sliding windows of the frontal lobe electrodes, FP1
and FP2, but these only has information gain values
of 0.128 and 0.125 each, far lower than those observed
in the other two experiments. To the lower end of
the selected values, IG scores of 0.047 appear, which
are considered very weak and yet still chosen by the
algorithm. The MBD dataset is thus an extremely
difficult dataset to classify.

Since the algorithm showed clearly a best attribute for
each, a benchmark was performed using a simple One Rule
Classifier (OneR). OneR will focus on the values of the
best attribute and attempt to separate classes by numerical
rules. In Table 3, the observations above are shown more
concretely with statistical evidence. ClassifyingMindBigData
based on the 0.128 IG attribute detailed above gains only
17.13% accuracy, whereas the far higher attributes for the other
two datasets gain 49.27% and 85.27% accuracies.

The datasets generated by this algorithm are taken for-
ward in the DEvo process, and the original datasets are thus
discarded. Further experiments are performed with this data
only.

4.2. Evolutionary Optimisation of MLP. During the algo-
rithm’s process, an issue arose with stagnation, in which the
solutions would quickly converge on a local minima and
an optimal solution was not found. On average, no further
improvement would be made after generation 2. It can be
noted that the relatively flat gradient in Figures 7 and 8
suggests that the search space’s fitness matrix possibly had a



Complexity 9

Table 2: Datasets generated by evolutionary attribute selection.

Dataset Population Generations No. Chosen Attributes
Mental State 20 20 99
Emotional State 20 20 500
MindBigData 20 20 40

Table 3: Accuracies when attempting to classify based on only one
attribute of the highest information gain.

Dataset MS ES MBD
Benchmark Accuracy (%) 49.27 85.27 17.13
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Figure 7: Three evolutionary algorithm simulations to optimise an
MLP for the mental state dataset.

much lower standard deviation and thus the area was more
difficult to traverse due to the lack of noticeable peaks and
troughs.The algorithmwas altered to prevent genetic collapse
with the addition of speciation. The changes were as follows:

(i) A solution would belong to one of three species, A, B,
or C.

(ii) A solution’s species label would be randomly ini-
tialised along with the population members.

(iii) During selection of parent1’s breeding partner, only a
member of parent1’s species could be chosen.

(iv) If only one member of a species remains, it will not
produce offspring.

(v) An offspring will have a small random chance to
become another species (manually tuned to 5%)

The implementation of separate species in the simulation
allowed for more complex, better solutions to be discovered.
The increasing gradients as observed in Figures 7, 8, and 9
show that constant improvement was achieved. The evolu-
tionary optimisation of MLP topology was set to run for a
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Figure 8: Three evolutionary algorithm simulations to optimise an
MLP for the emotional state dataset.

set 10 generations, tested for scientific benchmark accuracy
three times due to the possibility of a single randommutation
finding a good result by chance (random search), taking
approximately ten minutes for each to execute.

This was repeated three times for purposes of scientific
accuracy. Tables 4, 5, and 6 detail the accuracy values
measured at each generation along with detail of the network
topology. Figures 7, 8, and 9 graphically represent these
experiments to detail the gradient of solution score increase.

4.3. Manual LSTM Tuning. Manual tuning was performed to
explore the options for LSTM topology for both mental state
and emotional state classification. Evolutionary optimisation
was not applied due to the high resource usage of LSTM
training, due to many single networks taking multiple hours
to train on the 1280 CUDA cores of an NVidia GTX 1060.
Results in Table 7 show that, for mental state, 100 LSTM units
are somewhatmost optimal, whereas 25 LSTMunits were dis-
covered to be most optimal for emotional state classification
and 100 LSTMunits are best for theMindBigData digit set but
this result is extremely low for a uniform 10-class problem,
with very little information gain. Comparison of the LSTM
units to accuracy for both states can be seen in Figure 10.
For each of the experiments, these arrangements of LSTM
architecture will be taken forward as the selected model.

Additionally, empirical testing found that 50 epochs for
training of units seemed best but further exploration is
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Table 4: Global best MLP solutions for mental state classification.

Experiment Generation
1 2 3 4 5 6 7 8 9 10

1
Layers 1 1 1 1 1 1 1 1 1 1
Neurons 17 13 26 26 28 27 27 27 27 27

Accuracy (%) 77.0598 77.9889 78.8368 78.8368 79.685 79.8061 79.8061 79.8061 79.8061 79.8061

2
Layers 1 2 1 2 2 1 1 1 2 2
Neurons 3 5, 18 4 7, 3 7, 9 8 8 18 9, 21 11, 3

Accuracy (%) 74.7981 76.2116 76.4136 77.1809 77.4637 77.5040 77.5040 77.7059 78.7157 78.7561

3
Layers 1 1 1 1 1 1 1 1 1 1
Neurons 10 10 10 28 28 28 28 28 28 28

Accuracy (%) 78.4329 78.4329 78.4329 79.685 79.685 79.685 79.685 79.685 79.685 79.685

Table 5: Global best MLP solutions for emotional state classification.

Experiment Generation
1 2 3 4 5 6 7 8 9 10

1
Layers 3 3 2 2 2 1 1 1 1 1
Neurons 2, 8, 13 5, 12, 8 17, 17 21, 13 21, 13 6 6 6 6 6

Accuracy (%) 74.1557 93.3865 95.0281 95.0281 95.0281 95.6848 95.6848 95.6848 95.6848 95.6848

2
Layers 1 2 2 1 1 1 1 1 1 1
Neurons 12 38, 19 38, 19 8 8 8 8 15 15 15

Accuracy (%) 95.1563 95.4971 95.4971 95.5909 95.5909 95.5909 95.5909 96.1069 96.1069 96.1069

3
Layers 3 2 2 2 2 2 2 2 2 2
Neurons 7, 8, 3 7, 8 7, 8 7, 8 5, 8 5, 8 5, 8 9, 5 9, 5 9, 5

Accuracy (%) 90.625 93.125 93.125 93.125 94.0431 94.0431 94.0431 94.3714 94.3714 94.3714
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Figure 9: Three evolutionary algorithm simulations to optimise an
MLP for the MindBigData dataset.

required to fine-tune this parameter. A batch size of 50
formed the input vectors of sequential statistical brainwave
data for the LSTM. Gradient descent was handled by the
Adaptive Moment Estimation (Adam) algorithm, with a
decay value of 0.9. Weights were initialised by the commonly
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Figure 10: Manual tuning of LSTM topology for mental state (MS),
emotional state (ES), and MindBigData (MBD) classification.

used XAVIER algorithm. Optimisation was performed by
Stochastic Gradient Descent. Manual experiments found that
a network with a depth of 1 persistently outperformed deeper
networks of two or more hidden layers for this specific
context; interestingly, this too is mirrored in the evolutionary
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Table 6: Global best MLP solutions for MindBigData classification.

Experiment Generation
1 2 3 4 5 6 7 8 9 10

1
Layers 1 1 1 1 1 1 1 1 1 1
Neurons 2 5 7 11 19 28 34 34 34 94

Accuracy (%) 12.8453 18.2320 19.4751 21.4088 21.5470 21.9613 25.2762 25.2762 25.2762 25.6906

2
Layers 2 2 1 1 1 1 1 1 1 1
Neurons 10, 2 10, 9 9 10 25 27 34 87 87 87

Accuracy (%) 12.2928 13.8121 18.5081 19.7514 21.2707 24.4475 25.2762 26.6575 26.6575 26.6575

3
Layers 2 2 2 1 1 1 1 1 1 1
Neurons 3, 4 8, 9 8, 9 6 11 70 70 70 89 89

Accuracy (%) 11.6022 14.5028 14.5028 17.1271 21.4088 25.8287 25.8287 25.8287 27.0718 27.0718

Table 7: Manual tuning of LSTM topology for mental state (MS),
emotional state (ES), and EEGMindBigData classification.

LSTM Units MS (%) ES (%) MBD (%)
25 82.47 96.86 10.22
50 83.08 96.66 9.67
75 83.04 96.48 10.64
100 83.84 95.73 10.77
125 83.68 95.87 10.36
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Figure 11: Graph to show the time taken to build the final models
after search.

optimisation algorithms for theMLPwhich always converged
to a single layer to achieve higher fitness.

4.4. Single and Boost Accuracy. Figure 11 shows a comparison
of approximate time taken to train the various models, note
that 10-fold cross validation was performed to prevent over-
fitting and thus the actual time taken with this in mind is

around ten timesmore than the displayed value. Additionally,
this time was measured when training on the 1280 CUDA
cores of an NVidia GTX1060 (6GB) would take considerably
longer on a CPU. Although the mental state dataset had
approximately five times the number of attributes, the time
taken to learn on this dataset was only slightly longer than
the emotional state by an average of 11% (30.26s).

Since the LSTM topology was linearly tuned in a manual
process whereas the MLP was searched via an evolutionary
algorithm, the processes are not scientifically comparable
since the former depends on human experience and latter
upon resources available. Thus, time for these processes are
not given since only one is a measure of computational
resource usage; it is suggested that a future study shouldmake
use of the evolutionary algorithm within the search space of
LSTM topologies too, in which case they can be compared.
Though, it can be inferred from Figure 11 that the search for
an LSTMwould take considerably longer due to the increased
resources required in every experiment performed compared
to the MLP. Additionally, with this in mind, a Multiobjective
Optimisation (MOO) implementation of DEvo that consid-
ers both accuracy and resource usage as fitness metrics could
further find more optimal models in terms of both their
classification ability and optimal execution.

The overall results of the experiments can be seen firstly
in Table 8 and as a graphical comparison in Figure 12. For
the two three-state datasets, the most accurate model was an
AdaBoosted LSTMwith results of 84.44% and 97.06% accura-
cies for the mental state and mental emotional state datasets,
respectively. The single LSTM and evolutionary-optimised
MLP models come relatively close to the best result, though
take far less time to train when the measured approximate
values in Figure 11 are observed. On the other hand, for the
MindBigData digits dataset, the best solution by far was the
Adaptive Boosted DEvoMLP, and the same boostingmethod
applied to the LSTM that previously improved them actually
caused a loss in accuracy.

Manual tuning of LSTM network topology was per-
formed due to the limited computational resources available;
the success in optimisation of the MLP suggests that further
improvements could be made through an automated process
of evolutionary optimisation in terms of the LSTM topology.
A further improvement to the DEvo system could be made
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Table 8: Classification accuracy on the two optimised datasets by the DEvo MLP, LSTM, and selected boost method.

Dataset Accuracy (%) Boost Accuracy (%)
DEvo MLP LSTM AB(DEvo MLP) AB(LSTM)

Mental State 79.81 83.84 79.7 84.44
Emotional State 96.11 96.86 96.23 97.06
MindBigData Digits 27.07 10.77 31.35 9.94
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Figure 12: Final results for the experiment.

by exploring the possibility of optimising the LSTM structure
through an evolutionary approach. In addition, more bioin-
spired classification techniques should be experimentedwith,
for example, a convolutional neural network to better imitate
and improve on the classification ability of natural vision [54].

The three experiments were performed within the lim-
itations of the Muse headband’s TP9, AF7, AF8, and TP10
electrodes. Higher resolution EEG setups would allow for
further exploration of the system in terms of mental data
classification, e.g., for physical movement originating from
the motor cortex.

5. Conclusion

This study suggested DEvo, a Deep Evolutionary, approach
to optimise and classify complex signals using bioinspired
computingmethods in the whole pipeline, from feature selec-
tion to classification. For mental state and mental emotional
state classification of EEG brainwaves and theirmathematical
features, two best models were produced:

(1) A more accurate AdaBoosted LSTM, that although it
took more time and resources to train in comparison
to other methods, it managed to attain accuracies

of 84.44% and 97.06% for the two first datasets
(attentional and emotional state classification).

(2) Secondly, a AdaBoosted Multilayer Perceptron that
was optimised using a hyperheuristic evolutionary
algorithm. Though its classification accuracy was
slightly lower than that of the AdaBoosted LSTM
(79.7% and 96.23% for the same two experiments), it
took less time to train.

For the MindBigData digits dataset the most accurate
model was an Adaptive Boosted version of the DEvo opti-
mised MLP, which achieved an accuracy of 30%. For this
problem, none of the LSTMs were able to achieve any
meaningful or useful results, but the DEvo MLP approach
saved time and also produced results that were useful. Results
were impressive for application due to the high classification
ability along with the reduction of resource usage; real-time
training from individuals would be possible and thus provide
a more accurate EEG-based product to the consumer, for
example, in real-time monitoring of mental state for the
grading of meditation or yoga session quality. Real-time
communication would also be possible in human-computer
interaction where the brain activity acts as a degree of input.

The goal of the experiment was successfully achieved, the
DEvo approach has led to an optimised, resource-light model
that closely matches that to an extremely resource heavy
deep learning model, losing a small amount of accuracy but
computing in approximately 10%of the time, except for in one
case in which it far outperformed its competitor models.

The aforementioned models were trained on a set of
attributes that were selected with a bioinspired evolutionary
algorithm.

The success of these processes led to future work sugges-
tions, which follow the pattern of further bioinspired opti-
misation applications within the field of machine learning.
Future work should also consider, for better application of
the process within the field of electroencephalography, a
much larger collection of data from a considerably more
diverse range of subjects in order to bettermodel the classifier
optimisation for the thought pattern of a global population
rather than the subjects encompassed within this study.

Data Availability
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